{"title":"Fortification of milk powder with cashew apple juice using maltodextrin as a carrier material: A novel dairy recipe","authors":"Vinoth Kannan Sithu Rameshbabu, Vivek Rangarajan, Sampatrao Dagu Manjare","doi":"10.1002/fsn3.4390","DOIUrl":null,"url":null,"abstract":"<p>Food preservation and fortification pose significant challenges in the fruit and dairy sectors, particularly in developing regions with limited infrastructure and rising production volumes. Cashew apples, rich in antioxidants such as vitamin C and polyphenolic compounds, often go to waste due to their high perishability. In Goa, India, these discarded fruits are used to produce “Feni,” an alcoholic beverage, but broader utilization strategies are still needed. This study introduces a novel approach to extend the shelf life of dairy products like milk powder and enhance their nutritional content by fortifying it with cashew apple juice (CAJ) through spray drying. In order to reduce moisture content during spray drying and to obtain a free-flowing powder of the final product, maltodextrin was added. Maltodextrin alters the adhesive properties of the fruit juice droplets on surfaces and facilitates the formulation of free-flowing powder. The key parameters including solubility, bulk density, and glass transition temperature, along with structural analyses such as X-ray diffraction, field emission scanning electron microscope, and Fourier transform infrared spectroscopy, were evaluated to compare the fortified CAJ milk powder with its commercial counterparts. Experiments determined optimal spray-drying conditions, achieving a free-flowing powder at inlet and outlet temperatures of 140 and 60°C, respectively, with a 7% maltodextrin concentration (18 DE). The resulting milk powder displayed a Tg value of 76.7 ± 2.3°C, falling within the acceptable range of 65 to 98°C, demonstrating the feasibility of this fortification method based on the spray-drying process parameters.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.4390","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.4390","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Food preservation and fortification pose significant challenges in the fruit and dairy sectors, particularly in developing regions with limited infrastructure and rising production volumes. Cashew apples, rich in antioxidants such as vitamin C and polyphenolic compounds, often go to waste due to their high perishability. In Goa, India, these discarded fruits are used to produce “Feni,” an alcoholic beverage, but broader utilization strategies are still needed. This study introduces a novel approach to extend the shelf life of dairy products like milk powder and enhance their nutritional content by fortifying it with cashew apple juice (CAJ) through spray drying. In order to reduce moisture content during spray drying and to obtain a free-flowing powder of the final product, maltodextrin was added. Maltodextrin alters the adhesive properties of the fruit juice droplets on surfaces and facilitates the formulation of free-flowing powder. The key parameters including solubility, bulk density, and glass transition temperature, along with structural analyses such as X-ray diffraction, field emission scanning electron microscope, and Fourier transform infrared spectroscopy, were evaluated to compare the fortified CAJ milk powder with its commercial counterparts. Experiments determined optimal spray-drying conditions, achieving a free-flowing powder at inlet and outlet temperatures of 140 and 60°C, respectively, with a 7% maltodextrin concentration (18 DE). The resulting milk powder displayed a Tg value of 76.7 ± 2.3°C, falling within the acceptable range of 65 to 98°C, demonstrating the feasibility of this fortification method based on the spray-drying process parameters.
期刊介绍:
Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.