The protective mechanism of sevoflurane in pulmonary arterial hypertension via downregulation of TRAF6

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
{"title":"The protective mechanism of sevoflurane in pulmonary arterial hypertension via downregulation of TRAF6","authors":"","doi":"10.1016/j.taap.2024.117065","DOIUrl":null,"url":null,"abstract":"<div><p>Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy that, if not promptly treated, culminates in right heart failure. Therefore, pre-clinical studies are needed to support and optimize therapeutic approaches of PAH. Here, we explore a prospective function of sevoflurane in experimental PAH through regulating TRAF6. Monocrotaline (MCT)-induced PAH rats were subjected to sevoflurane inhalation and intratracheal instillation of lentivirus overexpressing TRAF6. Platelet-derived growth factor (PDGF)-treated pulmonary artery smooth muscle cells (PASMCs) were exposed to sevoflurane and genetically manipulated for TRAF6 overexpression. It was found that MCT and PDGF challenge upregulated the levels of TRAF6 in rat lung tissues and PASMCs, but sevoflurane treatment led to reduced TRAF6 expression. Sevoflurane inhalation in MCT-induced rats resulted in alleviative pulmonary vascular remodeling, mitigated right ventricular dysfunction and hypertrophy, improved mitochondrial function and dynamics, and inactivation of NF-κB pathway. In vitro studies confirmed that exposure to sevoflurane repressed PDGF-induced proliferation, migration, and phenotype switching of PASMCs, and suppressed mitochondrial dysfunction and NF-κB activation in PDGF-stimulated PASMCs. The beneficial impact of sevoflurane on pathological changes of lung and cell phenotype of PASMCs were reversed by overexpression of TRAF6. In summary, our study suggested the protective properties of sevoflurane in targeting PAH by downregulating TRAF6 expression, providing a novel avenue for the management of PAH.</p></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24002631","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy that, if not promptly treated, culminates in right heart failure. Therefore, pre-clinical studies are needed to support and optimize therapeutic approaches of PAH. Here, we explore a prospective function of sevoflurane in experimental PAH through regulating TRAF6. Monocrotaline (MCT)-induced PAH rats were subjected to sevoflurane inhalation and intratracheal instillation of lentivirus overexpressing TRAF6. Platelet-derived growth factor (PDGF)-treated pulmonary artery smooth muscle cells (PASMCs) were exposed to sevoflurane and genetically manipulated for TRAF6 overexpression. It was found that MCT and PDGF challenge upregulated the levels of TRAF6 in rat lung tissues and PASMCs, but sevoflurane treatment led to reduced TRAF6 expression. Sevoflurane inhalation in MCT-induced rats resulted in alleviative pulmonary vascular remodeling, mitigated right ventricular dysfunction and hypertrophy, improved mitochondrial function and dynamics, and inactivation of NF-κB pathway. In vitro studies confirmed that exposure to sevoflurane repressed PDGF-induced proliferation, migration, and phenotype switching of PASMCs, and suppressed mitochondrial dysfunction and NF-κB activation in PDGF-stimulated PASMCs. The beneficial impact of sevoflurane on pathological changes of lung and cell phenotype of PASMCs were reversed by overexpression of TRAF6. In summary, our study suggested the protective properties of sevoflurane in targeting PAH by downregulating TRAF6 expression, providing a novel avenue for the management of PAH.

七氟醚通过下调 TRAF6 对肺动脉高压的保护机制
肺动脉高压(PAH)是一种阻塞性血管病变,如果不及时治疗,最终会导致右心衰竭。因此,需要进行临床前研究来支持和优化 PAH 的治疗方法。在此,我们探讨了七氟烷通过调节 TRAF6 在实验性 PAH 中的前瞻性功能。对单克隆(MCT)诱导的 PAH 大鼠吸入七氟烷并气管内灌注过表达 TRAF6 的慢病毒。将血小板衍生生长因子(PDGF)处理过的肺动脉平滑肌细胞(PASMC)暴露于七氟烷,并对其进行TRAF6过表达的基因操作。研究发现,MCT 和 PDGF 挑战会上调大鼠肺组织和 PASMC 中 TRAF6 的水平,但七氟烷处理会降低 TRAF6 的表达。在 MCT 诱导的大鼠中吸入七氟烷可缓解肺血管重塑,减轻右心室功能障碍和肥大,改善线粒体功能和动态,并使 NF-κB 通路失活。体外研究证实,暴露于七氟烷可抑制 PDGF 诱导的 PASMC 增殖、迁移和表型转换,并抑制 PDGF 刺激的 PASMC 的线粒体功能障碍和 NF-κB 激活。过表达 TRAF6 会逆转七氟烷对肺部病理变化和 PASMC 细胞表型的有利影响。总之,我们的研究表明,七氟烷通过下调 TRAF6 的表达对 PAH 具有保护作用,为 PAH 的治疗提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
2.60%
发文量
309
审稿时长
32 days
期刊介绍: Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products. Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged. Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信