Benjamin WJ. Ng , Maria K. Kaukonen , Michelle E. McClements , Hoda Shamsnajafabadi , Robert E. MacLaren , Jasmina Cehajic-Kapetanovic
{"title":"Genetic therapies and potential therapeutic applications of CRISPR activators in the eye","authors":"Benjamin WJ. Ng , Maria K. Kaukonen , Michelle E. McClements , Hoda Shamsnajafabadi , Robert E. MacLaren , Jasmina Cehajic-Kapetanovic","doi":"10.1016/j.preteyeres.2024.101289","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. <em>In vivo</em> experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology <em>in vivo</em>, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.</p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":"102 ","pages":"Article 101289"},"PeriodicalIF":18.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350946224000545","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
传统的补充基因疗法只能治疗功能缺失性疾病,而且受到病毒包装大小的限制,无法治疗大基因。CRISPR/Cas 的发现带来了基因治疗领域的范式转变,有望实现精确的基因编辑,从而扩大可治疗疾病的范围。CRISPR/Cas 的最初用途主要集中在利用 Cas 内切酶触发靶细胞内源性非同源末端连接,从而对异常变异进行基因编辑或沉默。随后,该技术不断发展,对 Cas 酶甚至其引导 RNA 进行了修改,从而产生了更有效的碱基和质粒编辑工具。CRISPR/Cas 技术本身的进一步发展扩大了其功能范围,从定向编辑到可编程转录激活,将治疗重点转移到精确的内源性基因激活或上调,并有可能进行表观遗传修饰。利用这一平台进行的体内实验证明,CRISPR-激活剂(CRISPRa)具有治疗各种功能缺失性疾病和再生医学的潜力,突出了其克服传统策略局限性的多功能性。这篇综述总结了CRISPRa平台的分子机制、这一技术目前在体内的应用,并讨论了这一疗法在转化障碍方面的潜在解决方案,重点关注眼科疾病。
期刊介绍:
Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists.
The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.