Xue Han , Xiao Yang , Zhen Sun , Minzhi Du , Yong Du , Ting Zhang , Kun Zhang
{"title":"A general design framework of flexible thermoelectric devices bridging power requirements for wearable electronics","authors":"Xue Han , Xiao Yang , Zhen Sun , Minzhi Du , Yong Du , Ting Zhang , Kun Zhang","doi":"10.1016/j.mtphys.2024.101530","DOIUrl":null,"url":null,"abstract":"<div><p>Wearable thermoelectric generators (WTEGs) promise sustainable power for wearable electronics with various strategies proposed for on-body applications. However, there is still a lack of power-demand-oriented system design that directly provides WTEG configurations tailored to targeted end electronics, resulting in sufficient power only under extreme ambience. To address this, we propose a straightforward, power-demand-oriented design framework for WTEGs that bridges the power requirements of end electronics. As we input the properties of thermoelectric materials, specific operational conditions (temperature and heat transfer coefficient), expected power output and required flexibility, the design framework can directly determine the geometric features of thermoelectric pillars and fill factor. The effectiveness has been widely verified using data from the literature, showing a mean absolute deviation of 7.1 %. This framework shows high working efficiency and significantly shortens the design process, which is the very first ever-reported design tool for WTEGs. As a case, we use the framework and design a skin-conformable thermoelectric textile (TET) with optimal structure configurations and enhanced heat transfer capabilities, achieving a high normalized power density of 4.48 μW cm<sup>−2</sup> K<sup>−2</sup>. As expected, the TET, with a maximum power density of 231 μW cm<sup>−2</sup> successfully powered a series of on-body electronics when attached to the forearm at a breezy ambient temperature of ∼283 K. On the other hand, the TET exhibits a cooling effect of 5.73 K. Our work provides a thermal design guide for WTEGs, shedding light on the direct connection between WTEG configurations and end electronics.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"46 ","pages":"Article 101530"},"PeriodicalIF":10.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002062","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Wearable thermoelectric generators (WTEGs) promise sustainable power for wearable electronics with various strategies proposed for on-body applications. However, there is still a lack of power-demand-oriented system design that directly provides WTEG configurations tailored to targeted end electronics, resulting in sufficient power only under extreme ambience. To address this, we propose a straightforward, power-demand-oriented design framework for WTEGs that bridges the power requirements of end electronics. As we input the properties of thermoelectric materials, specific operational conditions (temperature and heat transfer coefficient), expected power output and required flexibility, the design framework can directly determine the geometric features of thermoelectric pillars and fill factor. The effectiveness has been widely verified using data from the literature, showing a mean absolute deviation of 7.1 %. This framework shows high working efficiency and significantly shortens the design process, which is the very first ever-reported design tool for WTEGs. As a case, we use the framework and design a skin-conformable thermoelectric textile (TET) with optimal structure configurations and enhanced heat transfer capabilities, achieving a high normalized power density of 4.48 μW cm−2 K−2. As expected, the TET, with a maximum power density of 231 μW cm−2 successfully powered a series of on-body electronics when attached to the forearm at a breezy ambient temperature of ∼283 K. On the other hand, the TET exhibits a cooling effect of 5.73 K. Our work provides a thermal design guide for WTEGs, shedding light on the direct connection between WTEG configurations and end electronics.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.