{"title":"Impact of chitin-derived β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine on chitinase upregulation in Shewanella baltica.","authors":"Takako Hirano, Masahiro Yokoyama, Masafumi Ikejima, Haruka Shiraishi, Wataru Hakamata, Toshiyuki Nishio","doi":"10.1093/femsle/fnae064","DOIUrl":null,"url":null,"abstract":"<p><p>The first steps in chitin degradation in marine bacteria involve chitinase, which produces N,N'-diacetylchitobiose (GlcNAc)2 from chitin. Moreover, in Vibrio bacteria, chitinase activity is enhanced by heterodisaccharide β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) produced from (GlcNAc)2 by chitin oligosaccharide deacetylase (COD). However, the role of COD in other marine bacteria, such as Shewanella, remains unexplored. This study investigates GlcNAc-GlcN's impact on chitinase gene expression and enzyme production in S. baltica ATCC BAA-1091, drawing parallels with Vibrio parahaemolyticus RIMD2210633. Using real-time quantitative PCR, the study assesses the upregulation of chitinase gene expression in S. baltica in response to GlcNAc-GlcN, informed by COD's known ability to produce GlcNAc-GlcN from (GlcNAc)2. In Vibrio, GlcNAc-GlcN considerably upregulates chitinase gene expression. This study posits a similar regulatory mechanism in S. baltica, with preliminary investigations indicating COD's capacity to produce GlcNAc-GlcN. This study highlights the importance of exploring GlcNAc-GlcN's regulatory role in chitin metabolism across diverse marine bacteria. The potential induction of chitinase production in S. baltica suggests broader ecological implications. Further research is crucial for a comprehensive understanding of chitin utilization and regulatory pathways in marine bacterial genera.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae064","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The first steps in chitin degradation in marine bacteria involve chitinase, which produces N,N'-diacetylchitobiose (GlcNAc)2 from chitin. Moreover, in Vibrio bacteria, chitinase activity is enhanced by heterodisaccharide β-N-acetyl-d-glucosaminyl-(1,4)-d-glucosamine (GlcNAc-GlcN) produced from (GlcNAc)2 by chitin oligosaccharide deacetylase (COD). However, the role of COD in other marine bacteria, such as Shewanella, remains unexplored. This study investigates GlcNAc-GlcN's impact on chitinase gene expression and enzyme production in S. baltica ATCC BAA-1091, drawing parallels with Vibrio parahaemolyticus RIMD2210633. Using real-time quantitative PCR, the study assesses the upregulation of chitinase gene expression in S. baltica in response to GlcNAc-GlcN, informed by COD's known ability to produce GlcNAc-GlcN from (GlcNAc)2. In Vibrio, GlcNAc-GlcN considerably upregulates chitinase gene expression. This study posits a similar regulatory mechanism in S. baltica, with preliminary investigations indicating COD's capacity to produce GlcNAc-GlcN. This study highlights the importance of exploring GlcNAc-GlcN's regulatory role in chitin metabolism across diverse marine bacteria. The potential induction of chitinase production in S. baltica suggests broader ecological implications. Further research is crucial for a comprehensive understanding of chitin utilization and regulatory pathways in marine bacterial genera.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.