Firooz Safaefar, Javad Karamdel, Hadi Veladi, Masoud Maleki
{"title":"Design and implementation of a lab-on-a-chip for assisted reproductive technologies.","authors":"Firooz Safaefar, Javad Karamdel, Hadi Veladi, Masoud Maleki","doi":"10.34172/bi.2023.28902","DOIUrl":null,"url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>The microfluidic device is highly optimized to remove oocytes from the cumulus-corona cell mass surrounding them. Additionally, it effectively captures and immobilizes the oocytes, aiding in assessing their quality and facilitating the injection of sperm into the oocyte. In this study, a novel microfluidic chip was designed and manufactured using conventional soft lithography methods.</p><p><strong>Methods: </strong>This research proposes the utilization of a microfluidic chip as a substitute for the conventional manual procedures involved in oocyte denudation, trapping, and immobilization. The microfluidic chip was modeled and simulated using COMSOL Multiphysics® 5.2 software to optimize and enhance its design and performance. The microfluidic chip was fabricated using conventional injection molding techniques on a polydimethylsiloxane substrate by employing soft lithography methods.</p><p><strong>Results: </strong>A hydrostatic force was applied to guide the oocyte through predetermined pathways to eliminate the cumulus cells surrounding the oocyte. The oocyte was subsequently confined within the designated trap region by utilizing hydraulic resistance along the paths and immobilized by applying vacuum force.</p><p><strong>Conclusion: </strong>The application of this chip necessitates a lower level of operator expertise compared to enzymatic and mechanical techniques. Moreover, it is feasible to continuously monitor the oocyte's state throughout the procedure. There is a reduced need for cultural media compared to more standard approaches.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298026/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.2023.28902","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The microfluidic device is highly optimized to remove oocytes from the cumulus-corona cell mass surrounding them. Additionally, it effectively captures and immobilizes the oocytes, aiding in assessing their quality and facilitating the injection of sperm into the oocyte. In this study, a novel microfluidic chip was designed and manufactured using conventional soft lithography methods.
Methods: This research proposes the utilization of a microfluidic chip as a substitute for the conventional manual procedures involved in oocyte denudation, trapping, and immobilization. The microfluidic chip was modeled and simulated using COMSOL Multiphysics® 5.2 software to optimize and enhance its design and performance. The microfluidic chip was fabricated using conventional injection molding techniques on a polydimethylsiloxane substrate by employing soft lithography methods.
Results: A hydrostatic force was applied to guide the oocyte through predetermined pathways to eliminate the cumulus cells surrounding the oocyte. The oocyte was subsequently confined within the designated trap region by utilizing hydraulic resistance along the paths and immobilized by applying vacuum force.
Conclusion: The application of this chip necessitates a lower level of operator expertise compared to enzymatic and mechanical techniques. Moreover, it is feasible to continuously monitor the oocyte's state throughout the procedure. There is a reduced need for cultural media compared to more standard approaches.
BioimpactsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍:
BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.