Thinking Inside the Bounds: Improved Error Distributions for Indifference Point Data Analysis and Simulation Via Beta Regression using Common Discounting Functions.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-06-04 eCollection Date: 2024-06-01 DOI:10.1007/s40614-024-00410-8
Mingang Kim, Mikhail N Koffarnus, Christopher T Franck
{"title":"Thinking Inside the Bounds: Improved Error Distributions for Indifference Point Data Analysis and Simulation Via Beta Regression using Common Discounting Functions.","authors":"Mingang Kim, Mikhail N Koffarnus, Christopher T Franck","doi":"10.1007/s40614-024-00410-8","DOIUrl":null,"url":null,"abstract":"<p><p>Standard nonlinear regression is commonly used when modeling indifference points due to its ability to closely follow observed data, resulting in a good model fit. However, standard nonlinear regression currently lacks a reasonable distribution-based framework for indifference points, which limits its ability to adequately describe the inherent variability in the data. Software commonly assumes data follow a normal distribution with constant variance. However, typical indifference points do not follow a normal distribution or exhibit constant variance. To address these limitations, this paper introduces a class of nonlinear beta regression models that offers excellent fit to discounting data and enhances simulation-based approaches. This beta regression model can accommodate popular discounting functions. This work proposes three specific advances. First, our model automatically captures non-constant variance as a function of delay. Second, our model improves simulation-based approaches since it obeys the natural boundaries of observable data, unlike the ordinary assumption of normal residuals and constant variance. Finally, we introduce a scale-location-truncation trick that allows beta regression to accommodate observed values of 0 and 1. A comparison between beta regression and standard nonlinear regression reveals close agreement in the estimated discounting rate k obtained from both methods.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s40614-024-00410-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Standard nonlinear regression is commonly used when modeling indifference points due to its ability to closely follow observed data, resulting in a good model fit. However, standard nonlinear regression currently lacks a reasonable distribution-based framework for indifference points, which limits its ability to adequately describe the inherent variability in the data. Software commonly assumes data follow a normal distribution with constant variance. However, typical indifference points do not follow a normal distribution or exhibit constant variance. To address these limitations, this paper introduces a class of nonlinear beta regression models that offers excellent fit to discounting data and enhances simulation-based approaches. This beta regression model can accommodate popular discounting functions. This work proposes three specific advances. First, our model automatically captures non-constant variance as a function of delay. Second, our model improves simulation-based approaches since it obeys the natural boundaries of observable data, unlike the ordinary assumption of normal residuals and constant variance. Finally, we introduce a scale-location-truncation trick that allows beta regression to accommodate observed values of 0 and 1. A comparison between beta regression and standard nonlinear regression reveals close agreement in the estimated discounting rate k obtained from both methods.

边界内的思考:通过使用通用贴现函数的 Beta 回归,改进了用于差异点数据分析和模拟的误差分布。
由于标准非线性回归能够密切跟踪观察到的数据,从而获得良好的模型拟合效果,因此在建立参考点模型时通常使用标准非线性回归。然而,标准非线性回归目前还缺乏一个合理的基于分布的框架,这就限制了它充分描述数据固有变异性的能力。软件通常假定数据遵循方差恒定的正态分布。然而,典型的临界点并不遵循正态分布或表现出恒定方差。为了解决这些局限性,本文介绍了一类非线性贝塔回归模型,它能很好地拟合折现数据,并增强基于模拟的方法。这种贝塔回归模型可以适应流行的贴现函数。这项工作提出了三个具体进展。首先,我们的模型能自动捕捉作为延迟函数的非恒定方差。其次,我们的模型改进了基于模拟的方法,因为它服从可观测数据的自然边界,而不是普通的正态残差和恒方差假设。最后,我们引入了一种规模-位置-截断技巧,使贝塔回归能够容纳观察到的 0 和 1 值。 通过比较贝塔回归和标准非线性回归,我们发现两种方法得到的估计贴现率 k 非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信