Thinking Inside the Bounds: Improved Error Distributions for Indifference Point Data Analysis and Simulation Via Beta Regression using Common Discounting Functions.
Mingang Kim, Mikhail N Koffarnus, Christopher T Franck
{"title":"Thinking Inside the Bounds: Improved Error Distributions for Indifference Point Data Analysis and Simulation Via Beta Regression using Common Discounting Functions.","authors":"Mingang Kim, Mikhail N Koffarnus, Christopher T Franck","doi":"10.1007/s40614-024-00410-8","DOIUrl":null,"url":null,"abstract":"<p><p>Standard nonlinear regression is commonly used when modeling indifference points due to its ability to closely follow observed data, resulting in a good model fit. However, standard nonlinear regression currently lacks a reasonable distribution-based framework for indifference points, which limits its ability to adequately describe the inherent variability in the data. Software commonly assumes data follow a normal distribution with constant variance. However, typical indifference points do not follow a normal distribution or exhibit constant variance. To address these limitations, this paper introduces a class of nonlinear beta regression models that offers excellent fit to discounting data and enhances simulation-based approaches. This beta regression model can accommodate popular discounting functions. This work proposes three specific advances. First, our model automatically captures non-constant variance as a function of delay. Second, our model improves simulation-based approaches since it obeys the natural boundaries of observable data, unlike the ordinary assumption of normal residuals and constant variance. Finally, we introduce a scale-location-truncation trick that allows beta regression to accommodate observed values of 0 and 1. A comparison between beta regression and standard nonlinear regression reveals close agreement in the estimated discounting rate k obtained from both methods.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s40614-024-00410-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Standard nonlinear regression is commonly used when modeling indifference points due to its ability to closely follow observed data, resulting in a good model fit. However, standard nonlinear regression currently lacks a reasonable distribution-based framework for indifference points, which limits its ability to adequately describe the inherent variability in the data. Software commonly assumes data follow a normal distribution with constant variance. However, typical indifference points do not follow a normal distribution or exhibit constant variance. To address these limitations, this paper introduces a class of nonlinear beta regression models that offers excellent fit to discounting data and enhances simulation-based approaches. This beta regression model can accommodate popular discounting functions. This work proposes three specific advances. First, our model automatically captures non-constant variance as a function of delay. Second, our model improves simulation-based approaches since it obeys the natural boundaries of observable data, unlike the ordinary assumption of normal residuals and constant variance. Finally, we introduce a scale-location-truncation trick that allows beta regression to accommodate observed values of 0 and 1. A comparison between beta regression and standard nonlinear regression reveals close agreement in the estimated discounting rate k obtained from both methods.