{"title":"Unsupervised learning-aided extrapolation for accelerated design of superalloys","authors":"Weijie Liao, Ruihao Yuan, Xiangyi Xue, Jun Wang, Jinshan Li, Turab Lookman","doi":"10.1038/s41524-024-01358-8","DOIUrl":null,"url":null,"abstract":"<p>Machine learning has been widely used to guide the search for new materials by learning the patterns underlying available data. However, the pure prediction-oriented search is often biased to interpolation due to the limited data in a large unexplored space. Here we present a sampling framework towards extrapolation, that integrates unsupervised clustering, interpretable analysis, and similarity evaluation to sample target candidates with improved properties from a vast search space. Using the design of superalloys with improved <span>\\({\\gamma }^{{\\prime} }\\)</span>-phase solvus temperature (<span>\\({T}_{{\\gamma }^{{\\prime} }}\\)</span>) as a model case, we start with sparse data, and by a few experiments, we find nine new superalloys with chemistries distinct to those in the training data. Three of them show improved <span>\\({T}_{{\\gamma }^{{\\prime} }}\\)</span> by about 50 °C, a large enhancement for superalloys. Moreover, we find two features characterizing mismatch in atomic size and mixing enthalpy linearly effect. This work demonstrates the capability of unsupervised learning to search for new materials when limited data is available.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"82 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01358-8","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning has been widely used to guide the search for new materials by learning the patterns underlying available data. However, the pure prediction-oriented search is often biased to interpolation due to the limited data in a large unexplored space. Here we present a sampling framework towards extrapolation, that integrates unsupervised clustering, interpretable analysis, and similarity evaluation to sample target candidates with improved properties from a vast search space. Using the design of superalloys with improved \({\gamma }^{{\prime} }\)-phase solvus temperature (\({T}_{{\gamma }^{{\prime} }}\)) as a model case, we start with sparse data, and by a few experiments, we find nine new superalloys with chemistries distinct to those in the training data. Three of them show improved \({T}_{{\gamma }^{{\prime} }}\) by about 50 °C, a large enhancement for superalloys. Moreover, we find two features characterizing mismatch in atomic size and mixing enthalpy linearly effect. This work demonstrates the capability of unsupervised learning to search for new materials when limited data is available.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.