Encapsulation of Lactobacillus acidophilus or Bifidobacterium longum Using Whey Protein Concentrate and Fructans as Wall Materials: Properties, Stability, and Viability in Simulated Gastrointestinal Tests

IF 2.6 Q2 FOOD SCIENCE & TECHNOLOGY
Naida Juárez-Trujillo, Audry Peredo-Lovillo, Fidel Martínez-Gutiérrez, Beatriz Pérez-Armendáriz, Rosa I. Ortiz-Basurto, Maribel Jiménez- Fernández
{"title":"Encapsulation of Lactobacillus acidophilus or Bifidobacterium longum Using Whey Protein Concentrate and Fructans as Wall Materials: Properties, Stability, and Viability in Simulated Gastrointestinal Tests","authors":"Naida Juárez-Trujillo, Audry Peredo-Lovillo, Fidel Martínez-Gutiérrez, Beatriz Pérez-Armendáriz, Rosa I. Ortiz-Basurto, Maribel Jiménez- Fernández","doi":"10.1021/acsfoodscitech.4c00235","DOIUrl":null,"url":null,"abstract":"Whey protein concentrate (WPC) and native agave fructans (NAFs) were used in the microencapsulation process of <i>Lactobacillus acidophilus</i> La-14 or <i>Bifidobacterium longum</i> subsp. <i>infantis</i>. Two treatments were carried out: 1. double emulsion-WPC-NAF and 2. WPC-NAF, both treatments were spray dried. Physicochemical, flow, and reconstitution properties, as well as thermal and microstructural stability were evaluated in microcapsules. Encapsulation efficiency after storage (one year, 4 °C) was determined under simulated gastrointestinal tests. The double emulsion-WPC-NAF showed an encapsulation efficiency &gt;76%, whereas this efficiency reached up to 95% in dried microcapsules. Both treatments showed viability of 8 and 9 log CFU/g after storage and <i>in vitro</i> digestion, respectively. Also, the formation of structural WPC-NAF complexes, related to thermal and structural stability, was observed in microcapsules of double emulsion-WPC-NAF. Hence, microcapsules made from double emulsion of WPC-NAF showed greater physicochemical, structural, and microbial stability, suggesting their use as potentially functional food additive.","PeriodicalId":72048,"journal":{"name":"ACS food science & technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS food science & technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsfoodscitech.4c00235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Whey protein concentrate (WPC) and native agave fructans (NAFs) were used in the microencapsulation process of Lactobacillus acidophilus La-14 or Bifidobacterium longum subsp. infantis. Two treatments were carried out: 1. double emulsion-WPC-NAF and 2. WPC-NAF, both treatments were spray dried. Physicochemical, flow, and reconstitution properties, as well as thermal and microstructural stability were evaluated in microcapsules. Encapsulation efficiency after storage (one year, 4 °C) was determined under simulated gastrointestinal tests. The double emulsion-WPC-NAF showed an encapsulation efficiency >76%, whereas this efficiency reached up to 95% in dried microcapsules. Both treatments showed viability of 8 and 9 log CFU/g after storage and in vitro digestion, respectively. Also, the formation of structural WPC-NAF complexes, related to thermal and structural stability, was observed in microcapsules of double emulsion-WPC-NAF. Hence, microcapsules made from double emulsion of WPC-NAF showed greater physicochemical, structural, and microbial stability, suggesting their use as potentially functional food additive.

Abstract Image

以浓缩乳清蛋白和果聚糖为壁材封装嗜酸乳杆菌或长双歧杆菌:模拟胃肠道试验中的特性、稳定性和活力
在嗜酸乳杆菌 La-14 或长双歧杆菌亚种的微胶囊化过程中使用了浓缩乳清蛋白(WPC)和原生龙舌兰果聚糖(NAFs)。共进行了两种处理1. 双乳液-WPC-NAF;2.WPC-NAF,两种处理均采用喷雾干燥。对微胶囊的理化、流动和重组特性以及热稳定性和微结构稳定性进行了评估。在模拟胃肠道试验中测定了储存(一年,4 °C)后的封装效率。双乳液-WPC-NAF 的封装效率为 76%,而干燥微胶囊的封装效率则高达 95%。两种处理方法在储存和体外消化后的存活率分别为 8 和 9 log CFU/g。此外,在双乳液-WPC-NAF 的微胶囊中还观察到 WPC-NAF 结构复合物的形成,这与热稳定性和结构稳定性有关。因此,由 WPC-NAF 双乳液制成的微胶囊显示出更高的理化、结构和微生物稳定性,建议将其用作潜在的功能性食品添加剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信