{"title":"Convergence of the complex block Jacobi methods under the generalized serial pivot strategies","authors":"Erna Begović Kovač , Vjeran Hari","doi":"10.1016/j.laa.2024.07.012","DOIUrl":null,"url":null,"abstract":"<div><p>The paper considers the convergence of the complex block Jacobi diagonalization methods under the large set of the generalized serial pivot strategies. The global convergence of the block methods for Hermitian, normal and <em>J</em>-Hermitian matrices is proven. In order to obtain the convergence results for the block methods that solve other eigenvalue problems, such as the generalized eigenvalue problem, we consider the convergence of a general block iterative process which uses the complex block Jacobi annihilators and operators.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"699 ","pages":"Pages 421-458"},"PeriodicalIF":1.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper considers the convergence of the complex block Jacobi diagonalization methods under the large set of the generalized serial pivot strategies. The global convergence of the block methods for Hermitian, normal and J-Hermitian matrices is proven. In order to obtain the convergence results for the block methods that solve other eigenvalue problems, such as the generalized eigenvalue problem, we consider the convergence of a general block iterative process which uses the complex block Jacobi annihilators and operators.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.