The Back-End Calibration Circuit for Reducing Hysteresis and Drift Effects of the Potentiometric RuO2 Dopamine Biosensor

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Po-Yu Kuo;Ming-Tai Hsu;Jung-Chuan Chou;Chih-Hsien Lai;Yu-Hsun Nien;Po-Hui Yang;Chi-Han Liao;Wei-Shun Chen;Jyun-Ming Huang
{"title":"The Back-End Calibration Circuit for Reducing Hysteresis and Drift Effects of the Potentiometric RuO2 Dopamine Biosensor","authors":"Po-Yu Kuo;Ming-Tai Hsu;Jung-Chuan Chou;Chih-Hsien Lai;Yu-Hsun Nien;Po-Hui Yang;Chi-Han Liao;Wei-Shun Chen;Jyun-Ming Huang","doi":"10.1109/TNANO.2024.3435447","DOIUrl":null,"url":null,"abstract":"Electrochemical biosensors often encounter inaccuracies and unreliability in measurements due to non-ideal effects such as drift and hysteresis. This study presents an innovative back-end calibration circuit specifically designed to mitigate hysteresis and drift effects in potentiometric ruthenium dioxide (RuO\n<sub>2</sub>\n) dopamine biosensors. The proposed calibration circuit combines analog circuitry with a microcontroller, employing gain-configured inverting amplifiers to individually correct hysteresis effects induced by both low and high dopamine concentrations. Furthermore, an inverse drift signal is applied to counteract overall drift effects, significantly improving the precision of dopamine measurements. The biosensor utilizes a radiofrequency sputtering system to deposit RuO\n<sub>2</sub>\n as a sensing membrane. A sequential drop-casting process is employed to add functional layers. Atomic force microscopy is utilized to characterize the surface morphology of the RuO\n<sub>2</sub>\n sensing membrane, confirming its uniform pattern and exceptional flatness. Reproducibility and repeatability experiments validate the stability and consistency of the fabricated RuO\n<sub>2</sub>\n dopamine biosensor, underscoring its potential for practical applications in the diagnosis of neurological disorders.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"578-583"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10614892/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical biosensors often encounter inaccuracies and unreliability in measurements due to non-ideal effects such as drift and hysteresis. This study presents an innovative back-end calibration circuit specifically designed to mitigate hysteresis and drift effects in potentiometric ruthenium dioxide (RuO 2 ) dopamine biosensors. The proposed calibration circuit combines analog circuitry with a microcontroller, employing gain-configured inverting amplifiers to individually correct hysteresis effects induced by both low and high dopamine concentrations. Furthermore, an inverse drift signal is applied to counteract overall drift effects, significantly improving the precision of dopamine measurements. The biosensor utilizes a radiofrequency sputtering system to deposit RuO 2 as a sensing membrane. A sequential drop-casting process is employed to add functional layers. Atomic force microscopy is utilized to characterize the surface morphology of the RuO 2 sensing membrane, confirming its uniform pattern and exceptional flatness. Reproducibility and repeatability experiments validate the stability and consistency of the fabricated RuO 2 dopamine biosensor, underscoring its potential for practical applications in the diagnosis of neurological disorders.
减少电位计 RuO2 多巴胺生物传感器迟滞和漂移效应的后端校准电路
由于漂移和滞后等非理想效应,电化学生物传感器经常会遇到测量不准确和不可靠的问题。本研究提出了一种创新的后端校准电路,专门用于减轻电位计二氧化钌(RuO2)多巴胺生物传感器的滞后和漂移效应。所提出的校准电路将模拟电路与微控制器相结合,采用增益配置的反相放大器来单独纠正由低浓度和高浓度多巴胺引起的滞后效应。此外,还采用了反漂移信号来抵消总体漂移效应,从而大大提高了多巴胺测量的精度。该生物传感器利用射频溅射系统沉积 RuO2 作为传感膜。采用连续滴铸工艺添加功能层。利用原子力显微镜对 RuO2 传感膜的表面形态进行了表征,确认了其均匀的图案和优异的平整度。再现性和可重复性实验验证了制备的 RuO2 多巴胺生物传感器的稳定性和一致性,突显了其在神经系统疾病诊断中的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信