Genomic analysis of foodborne Staphylococcus aureus obtained from unannounced food inspections between 2012 and 2021 in East China.

IF 2.2 4区 生物学 Q3 MICROBIOLOGY
Chu Lu, Wenjie Xiao, Haoyun Yu, Weiyi Song, Zhemin Zhou, Ning Dong, Zhihai Fan, Heng Li
{"title":"Genomic analysis of foodborne Staphylococcus aureus obtained from unannounced food inspections between 2012 and 2021 in East China.","authors":"Chu Lu, Wenjie Xiao, Haoyun Yu, Weiyi Song, Zhemin Zhou, Ning Dong, Zhihai Fan, Heng Li","doi":"10.1093/femsle/fnae062","DOIUrl":null,"url":null,"abstract":"<p><p>Staphylococcus aureus is a significant cause of foodborne illness in China. Our investigation concentrated on the genetic characterization of foodborne S. aureus identified during unannounced inspections conducted in Suzhou from 2012 to 2021. Dominant clones included clonal complex (CC) 1, CC398, CC188, and CC7, with CC398 notably increasing in 2020-2021. The isolates commonly contained 1-3 plasmids, with rep5a (48.55%) and rep16 (44.51%) predominating. A concerning 24.3% showed multidrug resistance, particularly to penam (blaZ and mecA) and fosfomycin (fosB), with resistance rates rising from 32.7% to 53.3%, potentially linked to the increase in CC types like CC5, CC20, and CC25. Most isolates carried genes for virulence factors such as aureolysin, hemolysin, staphylokinase, and staphylococcal complement inhibitor. A significant increase in virulence genes, especially the enterotoxin gene sea, was observed, possibly associated with shifts in CC1 and CC7 prevalence. This underscores the necessity for ongoing surveillance to understand the genomic traits of S. aureus in ensuring food safety.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae062","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Staphylococcus aureus is a significant cause of foodborne illness in China. Our investigation concentrated on the genetic characterization of foodborne S. aureus identified during unannounced inspections conducted in Suzhou from 2012 to 2021. Dominant clones included clonal complex (CC) 1, CC398, CC188, and CC7, with CC398 notably increasing in 2020-2021. The isolates commonly contained 1-3 plasmids, with rep5a (48.55%) and rep16 (44.51%) predominating. A concerning 24.3% showed multidrug resistance, particularly to penam (blaZ and mecA) and fosfomycin (fosB), with resistance rates rising from 32.7% to 53.3%, potentially linked to the increase in CC types like CC5, CC20, and CC25. Most isolates carried genes for virulence factors such as aureolysin, hemolysin, staphylokinase, and staphylococcal complement inhibitor. A significant increase in virulence genes, especially the enterotoxin gene sea, was observed, possibly associated with shifts in CC1 and CC7 prevalence. This underscores the necessity for ongoing surveillance to understand the genomic traits of S. aureus in ensuring food safety.

对华东地区 2012 年至 2021 年食品突击检查中发现的食源性金黄色葡萄球菌进行基因组分析。
金黄色葡萄球菌是中国食源性疾病的重要致病菌。我们的调查集中于对 2012 年至 2021 年苏州地区在突击检查中发现的食源性金黄色葡萄球菌进行基因鉴定。主要克隆包括 CC1、CC398、CC188 和 CC7,其中 CC398 在 2020-2021 年明显增加。分离物通常含有 1-3 个质粒,其中以 rep5a(48.55%)和 rep16(44.51%)为主。约 24.3%的分离物表现出多重耐药性,尤其是对五南(blaZ、mecA)和磷霉素(fosB),耐药率从 32.7%上升到 53.3%,这可能与 CC5、CC20 和 CC25 等 CC 类型的增加有关。大多数分离株都携带金黄色葡萄球菌素、溶血素、葡萄球菌激酶和葡萄球菌补体抑制剂等毒力因子的基因。观察到毒力基因,特别是肠毒素基因海明显增加,这可能与 CC1 和 CC7 流行率的变化有关。这突出表明,为确保食品安全,有必要进行持续监测,以了解金黄色葡萄球菌的基因组特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信