Self-Selective Crossbar Synapse Array with n-ZnO/p-NiOx/n-ZnO Structure for Neuromorphic Computing

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peter Hayoung Chung, Jiyeon Ryu, Daejae Seo, Dwipak Prasad Sahu, Minju Song, Junghwan Kim, Tae-Sik Yoon
{"title":"Self-Selective Crossbar Synapse Array with n-ZnO/p-NiOx/n-ZnO Structure for Neuromorphic Computing","authors":"Peter Hayoung Chung, Jiyeon Ryu, Daejae Seo, Dwipak Prasad Sahu, Minju Song, Junghwan Kim, Tae-Sik Yoon","doi":"10.1002/aelm.202400347","DOIUrl":null,"url":null,"abstract":"Artificial synapse devices are essential elements for highly energy-efficient neuromorphic computing. They are implemented as crossbar array architecture, where highly selective synaptic weight updates for training and sneak leakage-free inference operations are required. In this study, self-selective bipolar artificial synapse device is proposed with n-ZnO/p-NiO<sub>x</sub>/n-ZnO heterojunction, and its analog synapse operation with high selectivity is demonstrated in 32 × 32 crossbar array architecture without the aid of selector devices. The built-in potential barrier at p-NiO<sub>x</sub>/n-ZnO junction and the Zener tunneling effect provided nonlinear current–voltage characteristics at both voltage polarities for self-selecting function for synaptic potentiation and depression operations. Voltage-driven redistribution of oxygen ions inside <i>n–p–n</i> oxide structure, evidenced by x-ray photoelectron spectroscopy, modulated the distribution of oxygen vacancies in the layers and consequent conductance in an analog manner for the synaptic weight update operation. It demonstrates that the proposed <i>n–p–n</i> oxide device is a promising artificial synapse device implementing self-selectivity and analog synaptic weight update in a crossbar array architecture for neuromorphic computing.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400347","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial synapse devices are essential elements for highly energy-efficient neuromorphic computing. They are implemented as crossbar array architecture, where highly selective synaptic weight updates for training and sneak leakage-free inference operations are required. In this study, self-selective bipolar artificial synapse device is proposed with n-ZnO/p-NiOx/n-ZnO heterojunction, and its analog synapse operation with high selectivity is demonstrated in 32 × 32 crossbar array architecture without the aid of selector devices. The built-in potential barrier at p-NiOx/n-ZnO junction and the Zener tunneling effect provided nonlinear current–voltage characteristics at both voltage polarities for self-selecting function for synaptic potentiation and depression operations. Voltage-driven redistribution of oxygen ions inside n–p–n oxide structure, evidenced by x-ray photoelectron spectroscopy, modulated the distribution of oxygen vacancies in the layers and consequent conductance in an analog manner for the synaptic weight update operation. It demonstrates that the proposed n–p–n oxide device is a promising artificial synapse device implementing self-selectivity and analog synaptic weight update in a crossbar array architecture for neuromorphic computing.

Abstract Image

用于神经形态计算的 n-ZnO/p-NiOx/n-ZnO 结构自选择性交叉条突触阵列
人工突触设备是高能效神经形态计算的基本要素。它们以交叉棒阵列架构实现,需要高选择性的突触权重更新来进行训练和无泄漏推理操作。本研究提出了采用 n-ZnO/p-NiOx/n-ZnO 异质结的自选择性双极人工突触器件,并在 32 × 32 交叉条阵列架构中演示了其具有高选择性的模拟突触操作,而无需借助选择器器件。p-NiOx/n-ZnO 结的内置势垒和齐纳隧道效应在两个电压极性下提供了非线性电流-电压特性,从而实现了突触增效和抑制操作的自选择功能。X 射线光电子能谱证明,电压驱动的 n-p-n 氧化物结构内部氧离子的重新分布调节了层中氧空位的分布,从而以类似的方式调节了突触权重更新操作的电导。这表明,所提出的 n-p-n 氧化物器件是一种很有前途的人工突触器件,可在用于神经形态计算的交叉条阵列架构中实现自选择性和模拟突触权重更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信