{"title":"Strategic behavior in TSO-DSO coordinated flexibility markets: A Nash equilibrium and efficiency analysis","authors":"Luciana Marques, Anibal Sanjab","doi":"10.1016/j.segan.2024.101476","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the way in which the design of a TSO-DSO coordinated flexibility market can enable strategic behavior by flexibility service providers (FSPs). Multiple flexibility market models are considered for the procurement of flexibility services by transmission and distribution system operators, namely: a common (joint) market, a fragmented market, and a sequential multi-level market. Considering these market models, three non-cooperative games are introduced to investigate the strategic bidding and interaction between FSPs therein. Detailed conclusions are then drawn on the existence and uniqueness of Nash Equilibria (NEs) in the developed games, including derivations of closed-form expressions of the resulting NEs and corresponding price-of-anarchy, capturing the FSPs’ strategic bidding impact on the markets’ efficiency. The analysis considers – first in a duopoly setting, then with multiple players – three different use cases representing when: (1) a sufficient flexible capacity exists (sufficient flexibility offered from the FSPs and adequate interconnection/grid capacity between systems); (2) participants have a scarce flexibility capacity; and (3) a restrictive interface capacity exists between the systems. A case study considering an interconnected transmission–distribution system and multiple FSPs corroborates the analytical findings. The obtained results show that market participants have incentives to set bid prices greater than their marginal costs, thus decreasing the markets’ efficiency. This aspect is shown to be more pronounced when the available flexible capacity is limited, a restrictive line limit is present, or when the market is fragmented, thus supporting the need for additional network investments and the creation of joint flexibility market formats.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101476"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352467724002054/pdfft?md5=4db3ad05c919b56d9ef2c078ac832bf4&pid=1-s2.0-S2352467724002054-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002054","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the way in which the design of a TSO-DSO coordinated flexibility market can enable strategic behavior by flexibility service providers (FSPs). Multiple flexibility market models are considered for the procurement of flexibility services by transmission and distribution system operators, namely: a common (joint) market, a fragmented market, and a sequential multi-level market. Considering these market models, three non-cooperative games are introduced to investigate the strategic bidding and interaction between FSPs therein. Detailed conclusions are then drawn on the existence and uniqueness of Nash Equilibria (NEs) in the developed games, including derivations of closed-form expressions of the resulting NEs and corresponding price-of-anarchy, capturing the FSPs’ strategic bidding impact on the markets’ efficiency. The analysis considers – first in a duopoly setting, then with multiple players – three different use cases representing when: (1) a sufficient flexible capacity exists (sufficient flexibility offered from the FSPs and adequate interconnection/grid capacity between systems); (2) participants have a scarce flexibility capacity; and (3) a restrictive interface capacity exists between the systems. A case study considering an interconnected transmission–distribution system and multiple FSPs corroborates the analytical findings. The obtained results show that market participants have incentives to set bid prices greater than their marginal costs, thus decreasing the markets’ efficiency. This aspect is shown to be more pronounced when the available flexible capacity is limited, a restrictive line limit is present, or when the market is fragmented, thus supporting the need for additional network investments and the creation of joint flexibility market formats.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.