Huili Ran , Xue Liu , Jiajie Fan , Yun Yang , Lijie Zhang , Qin Guo , Bicheng Zhu , Quanlong Xu
{"title":"Engineering BiOBr/TpBD-COF S-scheme heterointerface via phase transformation strategy for boosted photocatalytic hydrogen generation","authors":"Huili Ran , Xue Liu , Jiajie Fan , Yun Yang , Lijie Zhang , Qin Guo , Bicheng Zhu , Quanlong Xu","doi":"10.1016/j.jmat.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of heterojunction is an effective way to promote the photoinduced charge carrier separation in spatial, thus accelerating the photocatalytic reaction. However, the regulation of interface properties, as a crucial factor in affecting the charge carrier diffusion process, still remains a significant challenge. In this work, BiOBr/TpBD-COF heterojunction was successfully constructed <em>via</em> a novel phase transformation strategy. Specifically, perovskite Cs<sub>3</sub>Bi<sub>2</sub>Br<sub>9</sub> was first synthesized and then <em>in-situ</em> transformed into BiOBr during the preparation of TpBD-COF procedure, thus obtaining BiOBr/TpBD-COF heterojunction with favorable interface. According to the <em>in-situ</em> X-ray photoelectron spectroscopy (XPS) characterization and electron paramagnetic resonance (EPR) analysis, the photogenerated electrons with weak reduction power transfer from BiOBr to TpBD-COF driven by the internal electric field under irradiation, conforming to S-scheme charge transfer mode. As a result, the photogenerated electrons and holes with strong redox abilities are spatially located on TpBD-COF and BiOBr surface, respectively, endowing the strong driving force toward the water splitting reaction. The optimized 10%BiOBr/TpBD-COF displayed remarkably enhanced photocatalytic hydrogen evolution rate (16.17 mmol⋅g<sup>−1</sup>⋅h<sup>−1</sup>) in comparison with TpBD-COF (5.18 mmol⋅g<sup>−1</sup>⋅h<sup>−1</sup>). This study will provide some novel inspirations for developing efficient COF-based S-scheme heterojunction photocatalysts.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 3","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001576","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of heterojunction is an effective way to promote the photoinduced charge carrier separation in spatial, thus accelerating the photocatalytic reaction. However, the regulation of interface properties, as a crucial factor in affecting the charge carrier diffusion process, still remains a significant challenge. In this work, BiOBr/TpBD-COF heterojunction was successfully constructed via a novel phase transformation strategy. Specifically, perovskite Cs3Bi2Br9 was first synthesized and then in-situ transformed into BiOBr during the preparation of TpBD-COF procedure, thus obtaining BiOBr/TpBD-COF heterojunction with favorable interface. According to the in-situ X-ray photoelectron spectroscopy (XPS) characterization and electron paramagnetic resonance (EPR) analysis, the photogenerated electrons with weak reduction power transfer from BiOBr to TpBD-COF driven by the internal electric field under irradiation, conforming to S-scheme charge transfer mode. As a result, the photogenerated electrons and holes with strong redox abilities are spatially located on TpBD-COF and BiOBr surface, respectively, endowing the strong driving force toward the water splitting reaction. The optimized 10%BiOBr/TpBD-COF displayed remarkably enhanced photocatalytic hydrogen evolution rate (16.17 mmol⋅g−1⋅h−1) in comparison with TpBD-COF (5.18 mmol⋅g−1⋅h−1). This study will provide some novel inspirations for developing efficient COF-based S-scheme heterojunction photocatalysts.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.