Regulation of dynamic recrystallization in p-type Bi2Te3-based compounds leads to high thermoelectric performance and robust mechanical properties

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuo Chen , Tingting Luo , Zhen Yang , Shenlong Zhong , Xianli Su , Yonggao Yan , Jinsong Wu , Pierre Ferdinand Poudeu Poudeu , Qingjie Zhang , Xinfeng Tang
{"title":"Regulation of dynamic recrystallization in p-type Bi2Te3-based compounds leads to high thermoelectric performance and robust mechanical properties","authors":"Shuo Chen ,&nbsp;Tingting Luo ,&nbsp;Zhen Yang ,&nbsp;Shenlong Zhong ,&nbsp;Xianli Su ,&nbsp;Yonggao Yan ,&nbsp;Jinsong Wu ,&nbsp;Pierre Ferdinand Poudeu Poudeu ,&nbsp;Qingjie Zhang ,&nbsp;Xinfeng Tang","doi":"10.1016/j.mtphys.2024.101524","DOIUrl":null,"url":null,"abstract":"<div><p>Bi<sub>2</sub>Te<sub>3</sub>-based bulk materials are the best commercially available thermoelectric materials for near room temperature applications. However, the poor mechanical properties of zone melting material and inferior thermoelectric performance of powder metallurgical material restrict their large scale deployment. In this study, <em>p</em>-type Bi₂Te₃-based materials were prepared using the hot extrusion technique, and the underlying mechanisms for microstructure evolution were revealed. The hot extrusion speed significantly impacts the strain rate, an indicator to modulate the dynamic recrystallization (DRX) and grain growth, thereby effectively regulating the microstructures of samples. For the sample extruded at a speed of 1.0 mm min<sup>−1</sup>, the refined grain with an average grain size of 1.53 μm and an orientation factor <em>F</em><sub>(110)</sub> of 0.28 is achieved. This highly textured structure and high-density low-angle boundaries (LAGBs) maintain the high carrier mobility of 264 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, comparable with the zone melting sample. In contrast, increasing grain boundaries, dislocations, and inherent point defects intensifies the phonon scattering and suppresses the lattice thermal conductivity to 0.73 W m<sup>−1</sup> K<sup>−1</sup>. All these contribute to a practical high <em>ZT</em> value of 1.1 at room temperature. Moreover, the fine grains and high-density dislocations ensure robust mechanic properties with a compressive strength of 189 MPa and a bending strength of 139 MPa, which is a guarantee for the successful cutting of microparticles with dimensions of 100 × 100 × 200 μm<sup>3</sup>. The fabrication of high-quality materials with both high thermoelectric performance and strong mechanical properties paves the way for the miniaturization of thermoelectric modules.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"46 ","pages":"Article 101524"},"PeriodicalIF":10.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002001","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bi2Te3-based bulk materials are the best commercially available thermoelectric materials for near room temperature applications. However, the poor mechanical properties of zone melting material and inferior thermoelectric performance of powder metallurgical material restrict their large scale deployment. In this study, p-type Bi₂Te₃-based materials were prepared using the hot extrusion technique, and the underlying mechanisms for microstructure evolution were revealed. The hot extrusion speed significantly impacts the strain rate, an indicator to modulate the dynamic recrystallization (DRX) and grain growth, thereby effectively regulating the microstructures of samples. For the sample extruded at a speed of 1.0 mm min−1, the refined grain with an average grain size of 1.53 μm and an orientation factor F(110) of 0.28 is achieved. This highly textured structure and high-density low-angle boundaries (LAGBs) maintain the high carrier mobility of 264 cm2 V−1 s−1, comparable with the zone melting sample. In contrast, increasing grain boundaries, dislocations, and inherent point defects intensifies the phonon scattering and suppresses the lattice thermal conductivity to 0.73 W m−1 K−1. All these contribute to a practical high ZT value of 1.1 at room temperature. Moreover, the fine grains and high-density dislocations ensure robust mechanic properties with a compressive strength of 189 MPa and a bending strength of 139 MPa, which is a guarantee for the successful cutting of microparticles with dimensions of 100 × 100 × 200 μm3. The fabrication of high-quality materials with both high thermoelectric performance and strong mechanical properties paves the way for the miniaturization of thermoelectric modules.

调节 p 型 Bi2Te3 基化合物的动态再结晶可实现高热电性能和稳健的机械特性
以 Bi2Te3 为基础的块状材料是目前市场上用于近室温应用的最佳热电材料。然而,区熔材料的机械性能较差,粉末冶金材料的热电性能较差,这些都限制了它们的大规模应用。本研究采用热挤压技术制备了 p 型 Bi₂Te₃ 基材料,并揭示了微观结构演变的内在机制。热挤压速度对应变速率有很大影响,而应变速率是调节动态再结晶(DRX)和晶粒生长的指标,因此能有效调节样品的微观结构。对于以 1.0 mm min-1 的速度挤压的样品,可获得平均晶粒尺寸为 1.53 μm、取向因子 F(110) 为 0.28 的细化晶粒。这种高纹理结构和高密度低角度边界(LAGB)保持了 264 cm2 V-1 s-1 的高载流子迁移率,与区熔样品相当。相反,晶界、位错和固有点缺陷的增加加剧了声子散射,并将晶格热导率抑制到 0.73 W m-1 K-1。所有这些都有助于在室温下实现 1.1 的实际高 ZT 值。此外,细小晶粒和高密度位错确保了材料的坚固机械性能,抗压强度达 189 兆帕,抗弯强度达 139 兆帕,这为成功切割尺寸为 100 × 100 × 200 μm3 的微颗粒提供了保证。制备出兼具高热电性能和强机械性能的优质材料,为热电模块的微型化铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信