{"title":"Advancements in non-thermal technologies for enhanced extraction of functional triacylglycerols from microalgal biomass: A comprehensive review","authors":"","doi":"10.1016/j.fochx.2024.101694","DOIUrl":null,"url":null,"abstract":"<div><p>Microalgae have emerged as a storehouse of biologically active components having numerous health benefits that can be used in the formulation of nutraceuticals, and functional foods, for human consumption. Among these biologically active components, functional triacylglycerols are increasingly attracting the attention of researchers owing to their beneficial characteristics. Microalgae are excellent sources of triacylglycerol containing omega-3 and omega-6 fatty acids and can be used by the vegan population as a replacement for fish oil. The functional triacylglycerols extracted using conventional processes have various drawbacks resulting in lower yield and inferior quality products. The non-thermal technologies are emerging as user-friendly and environment-friendly technologies that intensify the yield of final products and maintain the high purity of extracted products that can be used in food, cosmetic, pharmaceutical, and nutraceutical applications. The present review focuses on major non-thermal technologies that can probably be used for the extraction of high-quality functional triacylglycerols from microalgae.</p></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590157524005820/pdfft?md5=ddd78724bb0d408fe671a2ee1521b84e&pid=1-s2.0-S2590157524005820-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524005820","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Microalgae have emerged as a storehouse of biologically active components having numerous health benefits that can be used in the formulation of nutraceuticals, and functional foods, for human consumption. Among these biologically active components, functional triacylglycerols are increasingly attracting the attention of researchers owing to their beneficial characteristics. Microalgae are excellent sources of triacylglycerol containing omega-3 and omega-6 fatty acids and can be used by the vegan population as a replacement for fish oil. The functional triacylglycerols extracted using conventional processes have various drawbacks resulting in lower yield and inferior quality products. The non-thermal technologies are emerging as user-friendly and environment-friendly technologies that intensify the yield of final products and maintain the high purity of extracted products that can be used in food, cosmetic, pharmaceutical, and nutraceutical applications. The present review focuses on major non-thermal technologies that can probably be used for the extraction of high-quality functional triacylglycerols from microalgae.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.