Phase structure deciphering for pure polymers with a giant piezoelectric response

IF 33.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Guangbo Xia , Jian Fang , Dahua Shou , Xungai Wang
{"title":"Phase structure deciphering for pure polymers with a giant piezoelectric response","authors":"Guangbo Xia ,&nbsp;Jian Fang ,&nbsp;Dahua Shou ,&nbsp;Xungai Wang","doi":"10.1016/j.pmatsci.2024.101340","DOIUrl":null,"url":null,"abstract":"<div><p>Piezoelectric polymers hold great promise in flexible electromechanical conversion devices. The conventional view is that the piezoelectric phase of these polymers is dominated by a polar crystal phase. Guided by this understanding, enormous effort has been dedicated to enhancing piezoelectric performance via mediating the proportion or orientation of polar crystal. However, theoretical and experimental results indicate that the piezoelectric response of a pure polymer cannot be doubled, and the piezoelectric constant (|d|) can hardly reach 60 pm/V, greatly hindering the future progress of piezoelectric polymers. Recent evidence suggests that the structure distortions within the polar crystal phase as well as the paracrystal between the polar crystal and amorphous fraction are closely connected with piezoelectricity. With this new understanding, pure polymers with a giant piezoelectric response (featuring a |d| above 60 pm/V) can be readily achieved. Numerous recent studies have demonstrated the great potential of this new understanding in obtaining high-performance piezoelectric polymers. Herein, this review highlights the newly discovered piezoelectric phase structures, including structure distortion (within polar crystal) and interphase paracrystal, via analyzing the structure features and their piezoelectric contributions. Inspired by the newly evolved phase structure, the possibility of obtaining a giant piezoelectric response is expected in renewable and biodegradable piezoelectric polymers due to the similar phase configuration. Furthermore, possible theoretical developments, including new insight into the giant piezoelectric response and the dynamics at piezoelectric polymer/liquid interface are discussed. The feasibility and great promise of these developments have been demonstrated via the emerging applications in piezoelectric sensor/nanogenerator/actuator, self-display sensing, air filtration, droplet hydraulic generator, solar interfacial vapor, battery with liquid electrolyte, water treatment and electrical stimulation therapy.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"146 ","pages":"Article 101340"},"PeriodicalIF":33.6000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524001099","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoelectric polymers hold great promise in flexible electromechanical conversion devices. The conventional view is that the piezoelectric phase of these polymers is dominated by a polar crystal phase. Guided by this understanding, enormous effort has been dedicated to enhancing piezoelectric performance via mediating the proportion or orientation of polar crystal. However, theoretical and experimental results indicate that the piezoelectric response of a pure polymer cannot be doubled, and the piezoelectric constant (|d|) can hardly reach 60 pm/V, greatly hindering the future progress of piezoelectric polymers. Recent evidence suggests that the structure distortions within the polar crystal phase as well as the paracrystal between the polar crystal and amorphous fraction are closely connected with piezoelectricity. With this new understanding, pure polymers with a giant piezoelectric response (featuring a |d| above 60 pm/V) can be readily achieved. Numerous recent studies have demonstrated the great potential of this new understanding in obtaining high-performance piezoelectric polymers. Herein, this review highlights the newly discovered piezoelectric phase structures, including structure distortion (within polar crystal) and interphase paracrystal, via analyzing the structure features and their piezoelectric contributions. Inspired by the newly evolved phase structure, the possibility of obtaining a giant piezoelectric response is expected in renewable and biodegradable piezoelectric polymers due to the similar phase configuration. Furthermore, possible theoretical developments, including new insight into the giant piezoelectric response and the dynamics at piezoelectric polymer/liquid interface are discussed. The feasibility and great promise of these developments have been demonstrated via the emerging applications in piezoelectric sensor/nanogenerator/actuator, self-display sensing, air filtration, droplet hydraulic generator, solar interfacial vapor, battery with liquid electrolyte, water treatment and electrical stimulation therapy.

具有巨压电响应的纯聚合物的相结构解密
压电聚合物在柔性机电转换装置中大有可为。传统观点认为,这些聚合物的压电相由极性晶体相主导。在这一认识的指导下,人们致力于通过调节极性晶体的比例或取向来提高压电性能。然而,理论和实验结果表明,纯聚合物的压电响应无法翻倍,压电常数(|d|)很难达到 60 pm/V,这极大地阻碍了压电聚合物未来的发展。最新证据表明,极性晶体相内部的结构畸变以及极性晶体和非晶部分之间的准晶体与压电性密切相关。有了这一新的认识,就很容易实现具有巨大压电响应(|d|超过 60 pm/V)的纯聚合物。最近的大量研究表明,这一新认识在获得高性能压电聚合物方面具有巨大潜力。在此,本综述将通过分析结构特征及其压电贡献,重点介绍新发现的压电相结构,包括结构畸变(极性晶体内)和相间副晶。受新演化的相结构启发,可再生和可生物降解的压电聚合物由于具有类似的相结构,有望获得巨大的压电响应。此外,还讨论了可能的理论发展,包括对巨压电响应和压电聚合物/液体界面动力学的新见解。通过压电传感器/纳米发电机/致动器、自显示传感、空气过滤、液滴液压发生器、太阳能界面蒸汽、液态电解质电池、水处理和电刺激疗法等新兴应用,证明了这些发展的可行性和巨大前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Materials Science
Progress in Materials Science 工程技术-材料科学:综合
CiteScore
59.60
自引率
0.80%
发文量
101
审稿时长
11.4 months
期刊介绍: Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications. The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms. Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC). Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信