Jiahui Zhao, Jingli Yan, Jing Li, Guoyu Shi, Ming Su, Chenghui Liu, Guifang Jia
{"title":"Selective Ligase-Based Sample Processing-Free Discrimination and Detection of Site-Specific DNA 5-Hydroxymethylcytosine","authors":"Jiahui Zhao, Jingli Yan, Jing Li, Guoyu Shi, Ming Su, Chenghui Liu, Guifang Jia","doi":"10.1021/acs.analchem.4c02621","DOIUrl":null,"url":null,"abstract":"Accurate detection of site-specific 5-hydroxymethylcytosine (5hmC) in genomic DNA is of great significance, but it is technically challenging to directly distinguish very low levels of 5hmC from their abundant cytosine/5-methylcytosine (C/5mC) analogues. Herein, we wish to propose a selective ligase-mediated mechanism (SLim) that can directly discriminate 5hmC from C/5mC with a high specificity without the use of any sample processing protocol. In this new design, we discovered that HiFi Taq DNA Ligase can well tolerate the mismatched 5hmC/A base-pairing and then effectively ligate the associated nicking site while the mismatched 5mC/A or C/A pairs cannot be recognized by HiFi Taq DNA Ligase, providing a new way for direct and selective discriminating 5hmC from its similar analogues. Ultrasensitive and selective quantification of site-specific 5hmC is realized by coupling the SLim with polymerase chain reaction (PCR) or loop-mediated isothermal amplification (LAMP).","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"42 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c02621","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate detection of site-specific 5-hydroxymethylcytosine (5hmC) in genomic DNA is of great significance, but it is technically challenging to directly distinguish very low levels of 5hmC from their abundant cytosine/5-methylcytosine (C/5mC) analogues. Herein, we wish to propose a selective ligase-mediated mechanism (SLim) that can directly discriminate 5hmC from C/5mC with a high specificity without the use of any sample processing protocol. In this new design, we discovered that HiFi Taq DNA Ligase can well tolerate the mismatched 5hmC/A base-pairing and then effectively ligate the associated nicking site while the mismatched 5mC/A or C/A pairs cannot be recognized by HiFi Taq DNA Ligase, providing a new way for direct and selective discriminating 5hmC from its similar analogues. Ultrasensitive and selective quantification of site-specific 5hmC is realized by coupling the SLim with polymerase chain reaction (PCR) or loop-mediated isothermal amplification (LAMP).
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.