{"title":"Assessing single event upset susceptibility of InAlN HEMT with cap layer under heavy-ion environment","authors":"Vandana Kumari, Mridula Gupta, Manoj Saxena","doi":"10.1007/s00542-024-05723-x","DOIUrl":null,"url":null,"abstract":"<p>This paper has conducted a thorough investigation of InAlN HEMT using Silvaco TCAD Single Event Upset (SEU) module, which captures the degradation brought on by the heavy ion (H-ion) strike. A range of energies varying from very low, i.e. 0.001pC/µm to 5pC/µm has been used using Linear Energy Transfer (LET) function for the investigation. The effect caused by the barrier thickness has also been captured by combining the influence of the indium mole fraction. Additionally, a comparative analysis has been performed between InAlN and AlGaN HEMT against H-ion strike at different temperatures, barrier thicknesses and multiple H-ion strike. The presented results prove the applicability of InAlN HEMT for space applications, exhibiting a radiation hardened behaviour with high current density. To further expand the device viability for space applications, a GaN cap layer has been introduced, which further adds additional current carrying capacity along with lower leakage current and more radiation hardened characteristics.</p>","PeriodicalId":18544,"journal":{"name":"Microsystem Technologies","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00542-024-05723-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper has conducted a thorough investigation of InAlN HEMT using Silvaco TCAD Single Event Upset (SEU) module, which captures the degradation brought on by the heavy ion (H-ion) strike. A range of energies varying from very low, i.e. 0.001pC/µm to 5pC/µm has been used using Linear Energy Transfer (LET) function for the investigation. The effect caused by the barrier thickness has also been captured by combining the influence of the indium mole fraction. Additionally, a comparative analysis has been performed between InAlN and AlGaN HEMT against H-ion strike at different temperatures, barrier thicknesses and multiple H-ion strike. The presented results prove the applicability of InAlN HEMT for space applications, exhibiting a radiation hardened behaviour with high current density. To further expand the device viability for space applications, a GaN cap layer has been introduced, which further adds additional current carrying capacity along with lower leakage current and more radiation hardened characteristics.