{"title":"Enhancing Interpretability of Neural Compact Models: Toward Reliable Device Modeling","authors":"Chanwoo Park;Hyunbo Cho;Jungwoo Lee","doi":"10.1109/JEDS.2024.3409572","DOIUrl":null,"url":null,"abstract":"Neural Compact Models (NCMs) have emerged as a crucial tool to meet the stringent demands of Design-Technology Co-Optimization (DTCO) and to overcome the complexities and prolonged development cycles encountered in traditional compact model creation. Despite their efficiency in simulating electronic devices, a significant barrier to the widespread adoption of NCMs in the industry remains: the lack of interpretability. In the semiconductor sector, where inaccuracies or failures can lead to considerable financial consequences, it is critical to ensure that the model’s predictions are both understandable and reliable. This study aims to enhance the interpretability of NCMs used for I-V and C-V characterizations by clarifying the physical significance of latent vectors. A regularization technique is employed to disentangle features within the latent space, and interpolation is used to visualize and elucidate each dimension’s physical impact. Our approach, which offers interpretable insights into the model’s functionality, seeks to encourage broader implementation of NCMs in the industry, thus accelerating advancements in DTCO.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547540","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10547540/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Neural Compact Models (NCMs) have emerged as a crucial tool to meet the stringent demands of Design-Technology Co-Optimization (DTCO) and to overcome the complexities and prolonged development cycles encountered in traditional compact model creation. Despite their efficiency in simulating electronic devices, a significant barrier to the widespread adoption of NCMs in the industry remains: the lack of interpretability. In the semiconductor sector, where inaccuracies or failures can lead to considerable financial consequences, it is critical to ensure that the model’s predictions are both understandable and reliable. This study aims to enhance the interpretability of NCMs used for I-V and C-V characterizations by clarifying the physical significance of latent vectors. A regularization technique is employed to disentangle features within the latent space, and interpolation is used to visualize and elucidate each dimension’s physical impact. Our approach, which offers interpretable insights into the model’s functionality, seeks to encourage broader implementation of NCMs in the industry, thus accelerating advancements in DTCO.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.