Improving CZTS/ZTO solar cell efficiency with inorganic BSF layers

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Taoufik Chargui, Fatima Lmai, Mohamed Al-Hattab and Khalid Rahmani
{"title":"Improving CZTS/ZTO solar cell efficiency with inorganic BSF layers","authors":"Taoufik Chargui, Fatima Lmai, Mohamed Al-Hattab and Khalid Rahmani","doi":"10.1088/1361-6641/ad6477","DOIUrl":null,"url":null,"abstract":"Copper zinc tin sulfide (CZTS) thin-film solar cells have garnered significant attention in the solar energy sector. This study aims to enhance the performance of CZTS solar cells by replacing the conventional, toxic CdS buffer layer with (ZTO) for x = 0.2. Utilizing the one-dimensional solar cell capacitance simulator (SCAPS-1D) and informed by experimental data on the physical properties of the solar cell layers, we investigated the effects of thickness, doping density, and defect density of the CZTS absorber layer on the cell’s performance. Initially, an efficiency of 14.76% was achieved. To improve this efficiency, an inorganic back surface field (BSF) layer was incorporated to mitigate charge carrier recombination at the absorber/back contact metal interface. Various materials, including CuO, , Mo and Mo , were evaluated as potential BSF layers. Comparative analysis indicated that the inclusion of the BSF layer significantly enhances the solar cell efficiency, achieving up to 27% with as the BSF material. Furthermore, the study included an analysis of temperature effects and parasitic resistances to comprehensively assess the solar cell’s performance.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"15 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad6477","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Copper zinc tin sulfide (CZTS) thin-film solar cells have garnered significant attention in the solar energy sector. This study aims to enhance the performance of CZTS solar cells by replacing the conventional, toxic CdS buffer layer with (ZTO) for x = 0.2. Utilizing the one-dimensional solar cell capacitance simulator (SCAPS-1D) and informed by experimental data on the physical properties of the solar cell layers, we investigated the effects of thickness, doping density, and defect density of the CZTS absorber layer on the cell’s performance. Initially, an efficiency of 14.76% was achieved. To improve this efficiency, an inorganic back surface field (BSF) layer was incorporated to mitigate charge carrier recombination at the absorber/back contact metal interface. Various materials, including CuO, , Mo and Mo , were evaluated as potential BSF layers. Comparative analysis indicated that the inclusion of the BSF layer significantly enhances the solar cell efficiency, achieving up to 27% with as the BSF material. Furthermore, the study included an analysis of temperature effects and parasitic resistances to comprehensively assess the solar cell’s performance.
利用无机 BSF 层提高 CZTS/ZTO 太阳能电池的效率
铜锌锡硫化物(CZTS)薄膜太阳能电池在太阳能领域备受关注。本研究旨在通过在 x = 0.2 时用 (ZTO) 取代传统的有毒 CdS 缓冲层来提高 CZTS 太阳能电池的性能。利用一维太阳能电池电容模拟器(SCAPS-1D)和太阳能电池层物理特性的实验数据,我们研究了 CZTS 吸收层的厚度、掺杂密度和缺陷密度对电池性能的影响。最初的效率为 14.76%。为了提高这一效率,我们加入了无机背表面场(BSF)层,以减轻吸收器/背接触金属界面上的电荷载流子重组。包括氧化铜、钼和钼在内的各种材料被评估为潜在的 BSF 层。对比分析表明,加入 BSF 层可显著提高太阳能电池的效率,使用 BSF 材料时,效率最高可达 27%。此外,研究还分析了温度效应和寄生电阻,以全面评估太阳能电池的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Semiconductor Science and Technology
Semiconductor Science and Technology 工程技术-材料科学:综合
CiteScore
4.30
自引率
5.30%
发文量
216
审稿时长
2.4 months
期刊介绍: Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic. The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including: fundamental properties materials and nanostructures devices and applications fabrication and processing new analytical techniques simulation emerging fields: materials and devices for quantum technologies hybrid structures and devices 2D and topological materials metamaterials semiconductors for energy flexible electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信