{"title":"Enzymatic characterization of five thioredoxins and a thioredoxin reductase from Myxococcus xanthus.","authors":"Ryota Tanifuji, Yoshio Kimura","doi":"10.1093/femsle/fnae058","DOIUrl":null,"url":null,"abstract":"<p><p>Thioredoxin (Trx) is a disulfide-containing redox protein that functions as a disulfide oxidoreductase. Myxococcus xanthus contains five Trxs (Trx1-Trx5) and one Trx reductase (TrxR). Trxs typically have a CGPC active-site motif; however, M. xanthus Trxs have slightly different active-site sequences, with the exception of Trx4. The five Trxs of M. xanthus exhibited reduced activities against insulin, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), cystine, glutathione disulfide (GSSG), S-nitrosoglutathione (GSNO), and H2O2 in the presence of TrxR. Myxococcus xanthus adenylate kinase and serine/threonine phosphatase activities, which were increased by the addition of dithiothreitol, were activated by the addition of Trxs and TrxR. Among these, Trx1, which has a CAPC sequence in its active site, exhibited the highest reducing activity with the exception of GSNO. Myxococcus xanthus TrxR showed weak reducing activity towards DTNB, GSSG, GSNO, and H2O2, suggesting that it has broad substrate specificity, unlike previously reported low-molecular-weight TrxRs. TrxR reduced oxidized Trx1 as the best substrate, with a kcat/Km value of 0.253 min-1 µM-1, which was 10-28-fold higher than that of the other Trxs. These results suggest that all Trxs possess reducing activity and that Trx1 may be the most functional in M. xanthus because TrxR most efficiently reduces oxidized Trx1.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae058","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thioredoxin (Trx) is a disulfide-containing redox protein that functions as a disulfide oxidoreductase. Myxococcus xanthus contains five Trxs (Trx1-Trx5) and one Trx reductase (TrxR). Trxs typically have a CGPC active-site motif; however, M. xanthus Trxs have slightly different active-site sequences, with the exception of Trx4. The five Trxs of M. xanthus exhibited reduced activities against insulin, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), cystine, glutathione disulfide (GSSG), S-nitrosoglutathione (GSNO), and H2O2 in the presence of TrxR. Myxococcus xanthus adenylate kinase and serine/threonine phosphatase activities, which were increased by the addition of dithiothreitol, were activated by the addition of Trxs and TrxR. Among these, Trx1, which has a CAPC sequence in its active site, exhibited the highest reducing activity with the exception of GSNO. Myxococcus xanthus TrxR showed weak reducing activity towards DTNB, GSSG, GSNO, and H2O2, suggesting that it has broad substrate specificity, unlike previously reported low-molecular-weight TrxRs. TrxR reduced oxidized Trx1 as the best substrate, with a kcat/Km value of 0.253 min-1 µM-1, which was 10-28-fold higher than that of the other Trxs. These results suggest that all Trxs possess reducing activity and that Trx1 may be the most functional in M. xanthus because TrxR most efficiently reduces oxidized Trx1.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.