‘LinkedIn, LinkedIn on the screen, who is the greatest and smartest ever seen?’: A machine learning approach using valid LinkedIn cues to predict narcissism and intelligence

IF 4.9 2区 管理学 Q1 MANAGEMENT
Tobias M. Härtel, Benedikt A. Schuler, Mitja D. Back
{"title":"‘LinkedIn, LinkedIn on the screen, who is the greatest and smartest ever seen?’: A machine learning approach using valid LinkedIn cues to predict narcissism and intelligence","authors":"Tobias M. Härtel,&nbsp;Benedikt A. Schuler,&nbsp;Mitja D. Back","doi":"10.1111/joop.12531","DOIUrl":null,"url":null,"abstract":"<p>Recruiters routinely use LinkedIn profiles to infer applicants' individual traits like narcissism and intelligence, two key traits in online network and organizational contexts. However, little is known about LinkedIn profiles' predictive potential to accurately infer individual traits. According to Brunswik's lens model, accurate trait inferences depend on (a) the presence of valid cues in LinkedIn profiles containing information about users' individual traits and (b) the sensitive and consistent utilization of valid cues. We assessed narcissism (self-report) and intelligence (aptitude tests) in a sample of 406 LinkedIn users along with 64 LinkedIn cues (coded by three trained coders) that we derived from trait theory and previous empirical findings. We used a transparent, easy-to-interpret machine learning algorithm leveraging practical application potentials (elastic net) and applied state-of-the-art resampling techniques (nested cross-validation) to ensure robust results. Thereby, we uncover LinkedIn profiles' predictive potential: (a) LinkedIn profiles contain valid information about narcissism (e.g. uploading a background picture) and intelligence (e.g. listing many accomplishments), and (b) the elastic nets sensitively and consistently using these valid cues attain prediction accuracy (<i>r</i> = .35/.41 for narcissism/intelligence). The results have practical implications for improving recruiters' accuracy and foreshadow potentials and limitations of automated LinkedIn-based assessments for selection purposes.</p>","PeriodicalId":48330,"journal":{"name":"Journal of Occupational and Organizational Psychology","volume":"97 4","pages":"1572-1602"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/joop.12531","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational and Organizational Psychology","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/joop.12531","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

Recruiters routinely use LinkedIn profiles to infer applicants' individual traits like narcissism and intelligence, two key traits in online network and organizational contexts. However, little is known about LinkedIn profiles' predictive potential to accurately infer individual traits. According to Brunswik's lens model, accurate trait inferences depend on (a) the presence of valid cues in LinkedIn profiles containing information about users' individual traits and (b) the sensitive and consistent utilization of valid cues. We assessed narcissism (self-report) and intelligence (aptitude tests) in a sample of 406 LinkedIn users along with 64 LinkedIn cues (coded by three trained coders) that we derived from trait theory and previous empirical findings. We used a transparent, easy-to-interpret machine learning algorithm leveraging practical application potentials (elastic net) and applied state-of-the-art resampling techniques (nested cross-validation) to ensure robust results. Thereby, we uncover LinkedIn profiles' predictive potential: (a) LinkedIn profiles contain valid information about narcissism (e.g. uploading a background picture) and intelligence (e.g. listing many accomplishments), and (b) the elastic nets sensitively and consistently using these valid cues attain prediction accuracy (r = .35/.41 for narcissism/intelligence). The results have practical implications for improving recruiters' accuracy and foreshadow potentials and limitations of automated LinkedIn-based assessments for selection purposes.

Abstract Image

LinkedIn,屏幕上的LinkedIn,谁是有史以来最伟大最聪明的人?利用 LinkedIn 有效线索预测自恋和智力的机器学习方法
招聘人员经常使用LinkedIn档案来推断求职者的个人特质,比如自恋和智力,这是在线网络和组织环境中的两个关键特质。然而,人们对LinkedIn档案在准确推断个人特质方面的预测潜力知之甚少。根据布伦斯维克(Brunswik)的透镜模型,准确的特质推断取决于:(a)LinkedIn档案中是否存在包含用户个人特质信息的有效线索;(b)对有效线索的敏感和持续利用。我们评估了406名LinkedIn用户的自恋(自我报告)和智力(能力测试),以及64条LinkedIn线索(由三名训练有素的编码员进行编码),这些线索都是我们从特质理论和以往的实证研究中得出的。我们采用了一种透明、易于理解的机器学习算法,充分利用了实际应用潜力(弹性网),并应用了最先进的重采样技术(嵌套交叉验证),以确保获得稳健的结果。因此,我们发现了LinkedIn档案的预测潜力:(a)LinkedIn档案包含有关自恋(如上传背景图片)和聪明(如列出许多成就)的有效信息,以及(b)弹性网灵敏且一致地使用这些有效线索,从而达到预测准确性(自恋/聪明的r = .35/.41)。这些结果对提高招聘人员的准确性具有实际意义,并预示了基于LinkedIn的自动评估在选拔方面的潜力和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
4.80%
发文量
38
期刊介绍: The Journal of Occupational and Organizational Psychology aims to increase understanding of people and organisations at work including: - industrial, organizational, work, vocational and personnel psychology - behavioural and cognitive aspects of industrial relations - ergonomics and human factors Innovative or interdisciplinary approaches with a psychological emphasis are particularly welcome. So are papers which develop the links between occupational/organisational psychology and other areas of the discipline, such as social and cognitive psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信