{"title":"Novel Low-Temperature Interconnects for 2.5-/3-D MEMS Integration: Demonstration and Reliability","authors":"Fahimeh Emadi;Vesa Vuorinen;Shenyi Liu;Mervi Paulasto-Kröckel","doi":"10.1109/TCPMT.2024.3430061","DOIUrl":null,"url":null,"abstract":"To meet the essential demands for high-performance microelectromechanical system (MEMS) integration, this study developed a novel Cu–Sn-based solid-liquid interdiffusion (SLID) interconnect solution. The study utilized a metallization stack incorporating a Co layer to interact with low-temperature Cu–Sn–In SLID. Since Cu6(Sn,In)5 forms at a lower temperature than other phases in the Cu–Sn–In SLID system, the goal was to produce single-phase (Cu,Co)6(Sn,In)5 interconnects. Bonding conditions were established for the Cu–Sn–In/Co system and the Cu–Sn/Co system as a reference. Thorough assessments of their thermomechanical reliability were conducted through high-temperature storage (HTS), thermal shock (TS), and tensile tests. The Cu–Sn–In/Co system emerged as a reliable low-temperature solution with the following key attributes: 1) a reduced bonding temperature of 200 °C compared to the nearly 300 °C required for Cu–Sn SLID interconnects to achieve stable phases in the interconnect bondline; 2) the absence of the Cu3Sn phase and resulting void-free interconnects; and 3) high thermomechanical reliability with tensile strengths exceeding the minimum requirements outlined in the MIL-STD-883 method 2027.2, particularly following the HTS test at 150 °C for 1000 h.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"14 8","pages":"1337-1346"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10600710","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10600710/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To meet the essential demands for high-performance microelectromechanical system (MEMS) integration, this study developed a novel Cu–Sn-based solid-liquid interdiffusion (SLID) interconnect solution. The study utilized a metallization stack incorporating a Co layer to interact with low-temperature Cu–Sn–In SLID. Since Cu6(Sn,In)5 forms at a lower temperature than other phases in the Cu–Sn–In SLID system, the goal was to produce single-phase (Cu,Co)6(Sn,In)5 interconnects. Bonding conditions were established for the Cu–Sn–In/Co system and the Cu–Sn/Co system as a reference. Thorough assessments of their thermomechanical reliability were conducted through high-temperature storage (HTS), thermal shock (TS), and tensile tests. The Cu–Sn–In/Co system emerged as a reliable low-temperature solution with the following key attributes: 1) a reduced bonding temperature of 200 °C compared to the nearly 300 °C required for Cu–Sn SLID interconnects to achieve stable phases in the interconnect bondline; 2) the absence of the Cu3Sn phase and resulting void-free interconnects; and 3) high thermomechanical reliability with tensile strengths exceeding the minimum requirements outlined in the MIL-STD-883 method 2027.2, particularly following the HTS test at 150 °C for 1000 h.
期刊介绍:
IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.