F.C. Liu , A.H. Feng , X. Pei , Y. Hovanski , R.S. Mishra , Z.Y. Ma
{"title":"Friction stir based welding, processing, extrusion and additive manufacturing","authors":"F.C. Liu , A.H. Feng , X. Pei , Y. Hovanski , R.S. Mishra , Z.Y. Ma","doi":"10.1016/j.pmatsci.2024.101330","DOIUrl":null,"url":null,"abstract":"<div><p>Friction stir welding and processing enabled the creation of stronger joints, novel ultrafine-grained metals, new metal matrix composites, and multifunctional surfaces at user-defined locations. The newly developed friction stir based additive manufacturing methods emerged as transformative technologies since these technologies allow three-dimensional printing of strong dense metal at reduced cost and unprecedented large scales. These technologies have been increasingly adopted in the field of aerospace, shipbuilding, rail transit, automotive, energy, and defense. Since considerable similarities exist in the friction stir technologies, a comprehensive review of the shared fundamentals in these technologies is critical to establish a common background for the entire friction stir community. This paper addressed such needs through (i) a critical assessment of the up-to-date technology innovations about friction stir technologies; (ii) a comprehensive summary of the fundamentals of the friction stir technologies on the aspects of materials flow, heat generation mechanism, microstructural evolution, mechanical properties, process simulation, and specific material issues; and (iii) a systematical analysis of the opportunities and challenges in advancing the friction stir technologies.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"146 ","pages":"Article 101330"},"PeriodicalIF":33.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000999","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Friction stir welding and processing enabled the creation of stronger joints, novel ultrafine-grained metals, new metal matrix composites, and multifunctional surfaces at user-defined locations. The newly developed friction stir based additive manufacturing methods emerged as transformative technologies since these technologies allow three-dimensional printing of strong dense metal at reduced cost and unprecedented large scales. These technologies have been increasingly adopted in the field of aerospace, shipbuilding, rail transit, automotive, energy, and defense. Since considerable similarities exist in the friction stir technologies, a comprehensive review of the shared fundamentals in these technologies is critical to establish a common background for the entire friction stir community. This paper addressed such needs through (i) a critical assessment of the up-to-date technology innovations about friction stir technologies; (ii) a comprehensive summary of the fundamentals of the friction stir technologies on the aspects of materials flow, heat generation mechanism, microstructural evolution, mechanical properties, process simulation, and specific material issues; and (iii) a systematical analysis of the opportunities and challenges in advancing the friction stir technologies.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.