Lightweight attention mechanisms for EEG emotion recognition for brain computer interface

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Naresh Kumar Gunda , Mohammed I. Khalaf , Shaleen Bhatnagar , Aadam Quraishi , Leeladhar Gudala , Ashok Kumar Pamidi Venkata , Faisal Yousef Alghayadh , Shtwai Alsubai , Vaibhav Bhatnagar
{"title":"Lightweight attention mechanisms for EEG emotion recognition for brain computer interface","authors":"Naresh Kumar Gunda ,&nbsp;Mohammed I. Khalaf ,&nbsp;Shaleen Bhatnagar ,&nbsp;Aadam Quraishi ,&nbsp;Leeladhar Gudala ,&nbsp;Ashok Kumar Pamidi Venkata ,&nbsp;Faisal Yousef Alghayadh ,&nbsp;Shtwai Alsubai ,&nbsp;Vaibhav Bhatnagar","doi":"10.1016/j.jneumeth.2024.110223","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>In the realm of brain-computer interfaces (BCI), identifying emotions from electroencephalogram (EEG) data is a difficult endeavor because of the volume of data, the intricacy of the signals, and the several channels that make up the signals.</p></div><div><h3>New methods</h3><p>Using dual-stream structure scaling and multiple attention mechanisms (LDMGEEG), a lightweight network is provided to maximize the accuracy and performance of EEG-based emotion identification. Reducing the number of computational parameters while maintaining the current level of classification accuracy is the aim. This network employs a symmetric dual-stream architecture to assess separately time-domain and frequency-domain spatio-temporal maps constructed using differential entropy features of EEG signals as inputs.</p></div><div><h3>Result</h3><p>The experimental results show that after significantly lowering the number of parameters, the model achieved the best possible performance in the field, with a 95.18 % accuracy on the SEED dataset.</p></div><div><h3>Comparison with existing methods</h3><p>Moreover, it reduced the number of parameters by 98 % when compared to existing models.</p></div><div><h3>Conclusion</h3><p>The proposed method distinct channel-time/frequency-space multiple attention and post-attention methods enhance the model's ability to aggregate features and result in lightweight performance.</p></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"410 ","pages":"Article 110223"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165027024001687/pdfft?md5=0ae1db4a55b8b9a96bd26c69bbb0dfec&pid=1-s2.0-S0165027024001687-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024001687","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

In the realm of brain-computer interfaces (BCI), identifying emotions from electroencephalogram (EEG) data is a difficult endeavor because of the volume of data, the intricacy of the signals, and the several channels that make up the signals.

New methods

Using dual-stream structure scaling and multiple attention mechanisms (LDMGEEG), a lightweight network is provided to maximize the accuracy and performance of EEG-based emotion identification. Reducing the number of computational parameters while maintaining the current level of classification accuracy is the aim. This network employs a symmetric dual-stream architecture to assess separately time-domain and frequency-domain spatio-temporal maps constructed using differential entropy features of EEG signals as inputs.

Result

The experimental results show that after significantly lowering the number of parameters, the model achieved the best possible performance in the field, with a 95.18 % accuracy on the SEED dataset.

Comparison with existing methods

Moreover, it reduced the number of parameters by 98 % when compared to existing models.

Conclusion

The proposed method distinct channel-time/frequency-space multiple attention and post-attention methods enhance the model's ability to aggregate features and result in lightweight performance.

脑电情感识别的轻量级注意力机制,用于脑机接口。
背景:在脑机接口(BCI)领域,从脑电图(EEG)数据中识别情绪是一项艰巨的任务,因为数据量大、信号错综复杂,而且信号由多个通道组成:新方法:利用双流结构缩放和多重注意机制(LDMGEEG),提供一种轻量级网络,最大限度地提高基于脑电图的情绪识别的准确性和性能。其目的是在保持现有分类准确性水平的同时减少计算参数的数量。该网络采用对称双流架构,分别评估以脑电信号的差分熵特征为输入构建的时域和频域时空图:实验结果表明,在大幅减少参数数量后,该模型在该领域取得了最佳性能,在 SEED 数据集上的准确率达到 95.18%:此外,与现有模型相比,该模型的参数数量减少了 98%:结论:所提出的方法具有独特的信道-时间/频率-空间多重关注和后关注方法,增强了模型聚合特征的能力,并带来了轻量级性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信