{"title":"Novel casein-derived immunomodulatory peptide PFPEVFG: Activity assessment, molecular docking, activity site and mechanism of action.","authors":"Siyi Li, Yutong Jiang, Zhiqi Cao, Yanfeng Tuo, Guangqing Mu, Shujuan Jiang","doi":"10.3168/jds.2024-25173","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, there is still a gap in the knowledge of the structure-activity relationship of immunomodulatory peptides. In this study, PFPEVFG was selected as a peptide with immunomodulatory activity from casein hydrolysate by virtual screening and its immunomodulatory activity was verified by the phagocytosis, proliferation, and expression of cytokines (IL-6, IL-1β, TNF-α) and chemokines (CXCL1, CXCL2) in RAW 264.7 macrophages. Next, molecular docking and double-stranded small interfering RNA (siRNA) mutually verified that the immunomodulatory activity of PFPEVFG was mediated by TLR2/4. Furthermore, the highest occupied molecular orbital (HOMO) analysis showed that the C<sub>19</sub> = O<sub>20</sub> site with a HOMO contribution of 32.22988% was its active site, and the phenylalanine, where the C<sub>19</sub> = O<sub>20</sub> site was located, was its active amino acid. Finally, the combination of pathway inhibitors and Western blot revealed that PFPEVFG activated macrophages through the nuclear factor-κB (NF-κB) signaling pathway. In summary, this study provided a new perspective on deeply understanding the structure-activity relationship of casein-derived immunomodulatory peptides, as well as a further theoretical and technological basis for the application of immunomodulatory peptides.</p>","PeriodicalId":354,"journal":{"name":"Journal of Dairy Science","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dairy Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3168/jds.2024-25173","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, there is still a gap in the knowledge of the structure-activity relationship of immunomodulatory peptides. In this study, PFPEVFG was selected as a peptide with immunomodulatory activity from casein hydrolysate by virtual screening and its immunomodulatory activity was verified by the phagocytosis, proliferation, and expression of cytokines (IL-6, IL-1β, TNF-α) and chemokines (CXCL1, CXCL2) in RAW 264.7 macrophages. Next, molecular docking and double-stranded small interfering RNA (siRNA) mutually verified that the immunomodulatory activity of PFPEVFG was mediated by TLR2/4. Furthermore, the highest occupied molecular orbital (HOMO) analysis showed that the C19 = O20 site with a HOMO contribution of 32.22988% was its active site, and the phenylalanine, where the C19 = O20 site was located, was its active amino acid. Finally, the combination of pathway inhibitors and Western blot revealed that PFPEVFG activated macrophages through the nuclear factor-κB (NF-κB) signaling pathway. In summary, this study provided a new perspective on deeply understanding the structure-activity relationship of casein-derived immunomodulatory peptides, as well as a further theoretical and technological basis for the application of immunomodulatory peptides.
期刊介绍:
The official journal of the American Dairy Science Association®, Journal of Dairy Science® (JDS) is the leading peer-reviewed general dairy research journal in the world. JDS readers represent education, industry, and government agencies in more than 70 countries with interests in biochemistry, breeding, economics, engineering, environment, food science, genetics, microbiology, nutrition, pathology, physiology, processing, public health, quality assurance, and sanitation.