{"title":"A versatile compact model of resistive random-access memory (RRAM)","authors":"","doi":"10.1016/j.sse.2024.108989","DOIUrl":null,"url":null,"abstract":"<div><p>We present a versatile compact model for resistive random-access memory (RRAM) that can model different types of RRAM devices such as oxide-RRAM (OxRAM) and conducting-bridge-RRAM (CBRAM). The model unifies the switching mechanisms of these RRAMs into a single framework. We showcase the model’s accuracy in reproducing published experimental device DC and transient characteristics of various RRAM structures. We also demonstrate the model’s efficacy in capturing RRAM variability and conducting 1T1R circuit simulations.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124001382","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We present a versatile compact model for resistive random-access memory (RRAM) that can model different types of RRAM devices such as oxide-RRAM (OxRAM) and conducting-bridge-RRAM (CBRAM). The model unifies the switching mechanisms of these RRAMs into a single framework. We showcase the model’s accuracy in reproducing published experimental device DC and transient characteristics of various RRAM structures. We also demonstrate the model’s efficacy in capturing RRAM variability and conducting 1T1R circuit simulations.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.