Gangyun Song, Xingxing Huang, Haijun Li, Zhengwei Wang, Dong Wang
{"title":"Impact of Installation Deviations on the Dynamic Characteristics of the Shaft System for 1 Gigawatt Hydro-Generator Unit","authors":"Gangyun Song, Xingxing Huang, Haijun Li, Zhengwei Wang, Dong Wang","doi":"10.3390/machines12070473","DOIUrl":null,"url":null,"abstract":"The shaft system, transferring the kinetic energy of water flow into electrical energy, is the most critical component in hydropower plants. Installation deviations of the shaft system for a giant hydro-generator unit can have significant impacts on its dynamic characteristics and overall performance. In this investigation, a three-dimensional geometry of the shaft system of an operating hydro-generator unit prototype with a rated power of 1 GW is established. Then, the calculation model of the shaft system is generated accordingly with tetrahedral and hexahedral elements. By applying different boundary conditions, the finite-element method is used to analyze the influences of installation deviations, including shaft radial misalignment and angular misalignment, on the dynamic characteristics of the shaft system. The calculation results reveal that the installation deviations change the natural frequencies, critical speeds, and mode shapes of the shaft system to a certain degree. The natural frequencies of the backward precession motion with installation deviations are reduced by 23% and 38% for the rated speed and the maximum runaway speed. Furthermore, for the forward precession motion, they increased by 30% and 48%, respectively. The critical speeds for the shaft system with radial and angular deviations are 3.2% and 3% larger than the critical speed of the shaft system without any mounting deviations. The radial and angular installation deviations below the maximum permissible values will not result in the structural performance degradation of the 1 GW hydro-generator shaft system. The conclusion drawn in this research can be used as a valuable reference for installing other rotating machinery.","PeriodicalId":509264,"journal":{"name":"Machines","volume":"58 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines12070473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The shaft system, transferring the kinetic energy of water flow into electrical energy, is the most critical component in hydropower plants. Installation deviations of the shaft system for a giant hydro-generator unit can have significant impacts on its dynamic characteristics and overall performance. In this investigation, a three-dimensional geometry of the shaft system of an operating hydro-generator unit prototype with a rated power of 1 GW is established. Then, the calculation model of the shaft system is generated accordingly with tetrahedral and hexahedral elements. By applying different boundary conditions, the finite-element method is used to analyze the influences of installation deviations, including shaft radial misalignment and angular misalignment, on the dynamic characteristics of the shaft system. The calculation results reveal that the installation deviations change the natural frequencies, critical speeds, and mode shapes of the shaft system to a certain degree. The natural frequencies of the backward precession motion with installation deviations are reduced by 23% and 38% for the rated speed and the maximum runaway speed. Furthermore, for the forward precession motion, they increased by 30% and 48%, respectively. The critical speeds for the shaft system with radial and angular deviations are 3.2% and 3% larger than the critical speed of the shaft system without any mounting deviations. The radial and angular installation deviations below the maximum permissible values will not result in the structural performance degradation of the 1 GW hydro-generator shaft system. The conclusion drawn in this research can be used as a valuable reference for installing other rotating machinery.