Zhikai Xing, Qiang Wang, Yongbao Liu, Mo Li, Xin Zhang
{"title":"Nonlinear Dynamic Analysis on Dual-Rotor-Bearing-Casing System for Marine Gas Turbine","authors":"Zhikai Xing, Qiang Wang, Yongbao Liu, Mo Li, Xin Zhang","doi":"10.1155/2024/8747551","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Taking the marine gas turbine as a research background, a dual-rotor-bearing-casing system model was established considering the bearing nonlinearities and unbalanced excitation. Based on Lagrange’s equation of motion and rotor dynamics theory, the effects of key parameters such as radial clearance of intershaft bearing, rotor mass eccentricity, and rotational speed on the nonlinear characteristics of the system are investigated. The results indicate that the typical parameters have a significant effect on the system’s nonlinearities. To alleviate the vibration jump phenomenon, the radial clearance should be reduced to improve the coupling between the high- and low-pressure rotors. Reducing the mass eccentricity can effectively degrade the resonance peaks, but it will highlight the hard resonance characteristics. The work process should pass through the resonant-speed regions and the low-speed regions of start-stop phase as soon as possible. The research findings contribute to understanding the nonlinear dynamic characteristics of dual-rotor systems, providing a theoretical basis for their stable operation and the optimal design of working speeds.</p>\n </div>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8747551","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8747551","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Taking the marine gas turbine as a research background, a dual-rotor-bearing-casing system model was established considering the bearing nonlinearities and unbalanced excitation. Based on Lagrange’s equation of motion and rotor dynamics theory, the effects of key parameters such as radial clearance of intershaft bearing, rotor mass eccentricity, and rotational speed on the nonlinear characteristics of the system are investigated. The results indicate that the typical parameters have a significant effect on the system’s nonlinearities. To alleviate the vibration jump phenomenon, the radial clearance should be reduced to improve the coupling between the high- and low-pressure rotors. Reducing the mass eccentricity can effectively degrade the resonance peaks, but it will highlight the hard resonance characteristics. The work process should pass through the resonant-speed regions and the low-speed regions of start-stop phase as soon as possible. The research findings contribute to understanding the nonlinear dynamic characteristics of dual-rotor systems, providing a theoretical basis for their stable operation and the optimal design of working speeds.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.