{"title":"Impact of phase selection on accuracy and scalability in calculating distributed energy resources hosting capacity","authors":"Tomislav Antić , Andrew Keane , Tomislav Capuder","doi":"10.1016/j.segan.2024.101473","DOIUrl":null,"url":null,"abstract":"<div><p>Hosting capacity (HC) and dynamic operating envelopes (DOEs), defined as dynamic, time-varying HC, are calculated using three-phase optimal power flow (OPF) formulations. Due to the computational complexity of such optimisation problems, HC and DOE are often calculated by introducing certain assumptions and approximations, including the linearised OPF formulation, which we implement in the Python-based tool ppOPF. Furthermore, we investigate how assumptions of the distributed energy resource (DER) connection phase impact the objective function value and computational time in calculating HC and DOE in distribution networks of different sizes. The results are not unambiguous and show that it is not possible to determine the optimal connection phase without introducing binary variables since, no matter the case study, the highest objective function values are calculated with mixed integer OPF formulations. The difference is especially visible in a real-world low-voltage network in which the difference between different scenarios is up to 14 MW in a single day. However, binary variables make the problem computationally complex and increase computational time to several hours in the DOE calculation, even when the optimality gap different from zero is set.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":"39 ","pages":"Article 101473"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724002029","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hosting capacity (HC) and dynamic operating envelopes (DOEs), defined as dynamic, time-varying HC, are calculated using three-phase optimal power flow (OPF) formulations. Due to the computational complexity of such optimisation problems, HC and DOE are often calculated by introducing certain assumptions and approximations, including the linearised OPF formulation, which we implement in the Python-based tool ppOPF. Furthermore, we investigate how assumptions of the distributed energy resource (DER) connection phase impact the objective function value and computational time in calculating HC and DOE in distribution networks of different sizes. The results are not unambiguous and show that it is not possible to determine the optimal connection phase without introducing binary variables since, no matter the case study, the highest objective function values are calculated with mixed integer OPF formulations. The difference is especially visible in a real-world low-voltage network in which the difference between different scenarios is up to 14 MW in a single day. However, binary variables make the problem computationally complex and increase computational time to several hours in the DOE calculation, even when the optimality gap different from zero is set.
期刊介绍:
Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.