Nutrient removal efficacy and microbial dynamics in constructed wetlands using Fe(III)-mineral substrates for low carbon-nitrogen ratio sewage treatment.
IF 3.5 3区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Nutrient removal efficacy and microbial dynamics in constructed wetlands using Fe(III)-mineral substrates for low carbon-nitrogen ratio sewage treatment.","authors":"Yu Li, Mengyue Zhang, Liang Li, Wenyuan Gao, Fei Huang, Guanming Lai, Liping Jia, Rui Liu","doi":"10.1007/s00449-024-03063-8","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the roles of two common sources of Fe(III)-minerals-volcanic rock (VR) and synthetic banded iron formations from waste iron tailings (BIF-W)-in vertical flow-constructed wetlands (VFCWs). The evaluation was conducted in the absence of critical environmental factors, including Fe(II), Fe(III), and soil organic matter (SOM), using metagenomic analysis and integrated correlation networks to predict nitrogen removal pathways. Our findings revealed that Fe(III)-minerals enhanced metabolic activities and cellular processes related to carbohydrate decomposition, thereby increasing the average COD removal rates by 10.7% for VR and 5.90% for BIF-W. Notably, VR improved nitrogen removal by 1.70% and 5.40% compared to BIF-W and the control, respectively. Fe(III)-mineral amendment in bioreactors also improved the retention of denitrification and nitrification bacteria (phylum Proteobacteria) and anammox bacteria (phylum Planctomycetes), with increases of 3.60% and 3.20% using VR compared to BIF-W. Metagenomic functional prediction indicated that the nitrogen removal mechanisms in VFCWs with low C/N ratios involve simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD). Network-based analyses and correlation pathways further suggest that the advantages of Fe(III)-minerals are manifested in the enhancement of denitrification microorganisms. Microbial communities may be activated by the functional dissolution of Fe(III)-minerals, which improves the stability of SOM or the conversion of Fe(III)/Fe(II). This study provides new insights into the functional roles of Fe(III)-minerals in VFCWs at the microbial community level, and provides a foundation for developing Fe-based SNAD enhancement technologies.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1707-1722"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03063-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluated the roles of two common sources of Fe(III)-minerals-volcanic rock (VR) and synthetic banded iron formations from waste iron tailings (BIF-W)-in vertical flow-constructed wetlands (VFCWs). The evaluation was conducted in the absence of critical environmental factors, including Fe(II), Fe(III), and soil organic matter (SOM), using metagenomic analysis and integrated correlation networks to predict nitrogen removal pathways. Our findings revealed that Fe(III)-minerals enhanced metabolic activities and cellular processes related to carbohydrate decomposition, thereby increasing the average COD removal rates by 10.7% for VR and 5.90% for BIF-W. Notably, VR improved nitrogen removal by 1.70% and 5.40% compared to BIF-W and the control, respectively. Fe(III)-mineral amendment in bioreactors also improved the retention of denitrification and nitrification bacteria (phylum Proteobacteria) and anammox bacteria (phylum Planctomycetes), with increases of 3.60% and 3.20% using VR compared to BIF-W. Metagenomic functional prediction indicated that the nitrogen removal mechanisms in VFCWs with low C/N ratios involve simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD). Network-based analyses and correlation pathways further suggest that the advantages of Fe(III)-minerals are manifested in the enhancement of denitrification microorganisms. Microbial communities may be activated by the functional dissolution of Fe(III)-minerals, which improves the stability of SOM or the conversion of Fe(III)/Fe(II). This study provides new insights into the functional roles of Fe(III)-minerals in VFCWs at the microbial community level, and provides a foundation for developing Fe-based SNAD enhancement technologies.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.