{"title":"Can we do better with Mylotarg? Model-based assessment of opportunities to improve therapeutic index","authors":"","doi":"10.1016/j.taap.2024.117034","DOIUrl":null,"url":null,"abstract":"<div><p>Late-stage clinical trial failures increase the overall cost and risk of bringing new drugs to market. Determining the pharmacokinetic (PK) drivers of toxicity and efficacy in preclinical studies and early clinical trials supports quantitative optimization of drug schedule and dose through computational modeling. Additionally, this approach permits prioritization of lead candidates with better PK properties early in development. Mylotarg is an antibody-drug conjugate (ADC) that attained U.S. Food and Drug Administration (FDA) approval under a fractionated dosing schedule after 17 years of clinical trials, including a 10-year period on the market resulting in hundreds of fatal adverse events. Although ADCs are often considered lower risk for toxicity due to their targeted nature, off-target activity and liberated payload can still constrain dosing and drive clinical failure. Under its original schedule, Mylotarg was dosed infrequently at high levels, which is typical for ADCs because of their long half-lives. However, our PK modeling suggests that these regimens increase maximum plasma concentration (C<sub>max</sub>)-related toxicities while producing suboptimal exposures to the target receptor. Our analysis demonstrates that the benefits of dose fractionation for Mylotarg tolerability should have been obvious early in the drug's clinical development and could have curtailed the proliferation of ineffective Phase III studies. We also identify schedules likely to be even more efficacious without compromising on tolerability. Alternatively, a longer-circulating Mylotarg formulation could obviate the need for dose fractionation, allowing superior patient convenience. Early-stage PK optimization through quantitative modeling methods can accelerate clinical development and prevent late-stage failures.</p></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24002321","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Late-stage clinical trial failures increase the overall cost and risk of bringing new drugs to market. Determining the pharmacokinetic (PK) drivers of toxicity and efficacy in preclinical studies and early clinical trials supports quantitative optimization of drug schedule and dose through computational modeling. Additionally, this approach permits prioritization of lead candidates with better PK properties early in development. Mylotarg is an antibody-drug conjugate (ADC) that attained U.S. Food and Drug Administration (FDA) approval under a fractionated dosing schedule after 17 years of clinical trials, including a 10-year period on the market resulting in hundreds of fatal adverse events. Although ADCs are often considered lower risk for toxicity due to their targeted nature, off-target activity and liberated payload can still constrain dosing and drive clinical failure. Under its original schedule, Mylotarg was dosed infrequently at high levels, which is typical for ADCs because of their long half-lives. However, our PK modeling suggests that these regimens increase maximum plasma concentration (Cmax)-related toxicities while producing suboptimal exposures to the target receptor. Our analysis demonstrates that the benefits of dose fractionation for Mylotarg tolerability should have been obvious early in the drug's clinical development and could have curtailed the proliferation of ineffective Phase III studies. We also identify schedules likely to be even more efficacious without compromising on tolerability. Alternatively, a longer-circulating Mylotarg formulation could obviate the need for dose fractionation, allowing superior patient convenience. Early-stage PK optimization through quantitative modeling methods can accelerate clinical development and prevent late-stage failures.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.