{"title":"Formal timing analysis of gate-level digital circuits using model checking","authors":"Qurat-ul Ain, Osman Hasan","doi":"10.1016/j.micpro.2024.105083","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the continuous reduction in the transistors sizing ruled by the Moore’s law, digital devices have become smaller, and more complex resulting in an enormous rise in the delay variations. Therefore, there is a dire need of precise and rigorous timing analysis to overcome anomalies during the timing analysis. Timings of digital circuits can be verified using various simulation or static timing analysis (STA) based tools but they provide estimated results due to their inherent in-exhaustive nature or report timing paths corresponding to non-existent functional paths, respectively. Formal verification provides complete and sound analysis results and has widely been used for the functional verification of digital circuits but its application in the timing analysis domain is somewhat limited. We present a generic framework to perform formal timing analysis of digital circuits with the help of Uppaal model-checker. The given digital circuit along with its timing parameters in the form of state transition diagram are modeled using timed automata in the Uppaal model checker. Timing delays are calculated from corresponding technology parameters, and Quartus Prime Pro is used to obtain the information about the circuits’ paths. In order to make the analysis scalable, we also propose a novel path partitioning technique and compare its results with complete path analysis and traditional STA. The formal model is verified with the help of properties to assess the timing characteristics, like time period of a clock, critical path, and propagation delay of the considered circuit. Modeling and verification of ISCAS-85 and ISCAS-89 benchmark circuits is presented for illustration purposes.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"109 ","pages":"Article 105083"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000784","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the continuous reduction in the transistors sizing ruled by the Moore’s law, digital devices have become smaller, and more complex resulting in an enormous rise in the delay variations. Therefore, there is a dire need of precise and rigorous timing analysis to overcome anomalies during the timing analysis. Timings of digital circuits can be verified using various simulation or static timing analysis (STA) based tools but they provide estimated results due to their inherent in-exhaustive nature or report timing paths corresponding to non-existent functional paths, respectively. Formal verification provides complete and sound analysis results and has widely been used for the functional verification of digital circuits but its application in the timing analysis domain is somewhat limited. We present a generic framework to perform formal timing analysis of digital circuits with the help of Uppaal model-checker. The given digital circuit along with its timing parameters in the form of state transition diagram are modeled using timed automata in the Uppaal model checker. Timing delays are calculated from corresponding technology parameters, and Quartus Prime Pro is used to obtain the information about the circuits’ paths. In order to make the analysis scalable, we also propose a novel path partitioning technique and compare its results with complete path analysis and traditional STA. The formal model is verified with the help of properties to assess the timing characteristics, like time period of a clock, critical path, and propagation delay of the considered circuit. Modeling and verification of ISCAS-85 and ISCAS-89 benchmark circuits is presented for illustration purposes.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.