Da-Young Kim , Seungjun Oh , Hae-Sun Ko , Sanghee Park , Young-Jun Jeon , Jihoe Kim , Dong Kwon Yang , Kye Won Park
{"title":"Sesamolin suppresses adipocyte differentiation through Keap1-dependent Nrf2 activation in adipocytes","authors":"Da-Young Kim , Seungjun Oh , Hae-Sun Ko , Sanghee Park , Young-Jun Jeon , Jihoe Kim , Dong Kwon Yang , Kye Won Park","doi":"10.1016/j.nutres.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>Sesamolin, a lignan isolated from sesame oils, has been found to possess neuroprotective, anticancer, and free radical scavenging properties. We hypothesized that sesamolin could stimulate the activity of nuclear factor erythroid-derived 2-like 2 (Nrf2) and inhibit adipocyte differentiation of preadipocytes. The objective of this study was to investigate effects of sesamolin on adipocyte differentiation and its underlying molecular mechanisms. In this study, we determined the effects of treatment with 25 to 100 µM sesamolin on adipogenesis in cell culture systems. Sesamolin inhibited lipid accumulation and suppressed the expression of adipocyte markers during adipocyte differentiation of C3H10T1/2, 3T3-L1, and primary preadipocytes. Mechanism studies revealed that sesamolin increased Nrf2 protein expression without inducing its mRNA, leading to an increase in the expression of Nrf2 target genes such as heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 (Nqo1) in C3H10T1/2 adipocytes and mouse embryonic fibroblasts. These effects were significantly attenuated in Nrf2 knockout (KO) mouse embryonic fibroblasts, indicating that effects of sesamolin were dependent on Nrf2. In H1299 human lung cancer cells with KO of Kelch like-ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, sesamolin failed to further increase Nrf2 protein expression. However, upon reexpressing Keap1 in Keap1 KO cells, the ability of sesamolin to elevate Nrf2 protein expression was restored, highlighting the crucial role of Keap1 in sesamolin-induced Nrf2 activation. Taken together, these findings show that sesamolin can inhibit adipocyte differentiation through Keap1-mediated Nrf2 activation.</p></div>","PeriodicalId":19245,"journal":{"name":"Nutrition Research","volume":"128 ","pages":"Pages 14-23"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0271531724000733","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Sesamolin, a lignan isolated from sesame oils, has been found to possess neuroprotective, anticancer, and free radical scavenging properties. We hypothesized that sesamolin could stimulate the activity of nuclear factor erythroid-derived 2-like 2 (Nrf2) and inhibit adipocyte differentiation of preadipocytes. The objective of this study was to investigate effects of sesamolin on adipocyte differentiation and its underlying molecular mechanisms. In this study, we determined the effects of treatment with 25 to 100 µM sesamolin on adipogenesis in cell culture systems. Sesamolin inhibited lipid accumulation and suppressed the expression of adipocyte markers during adipocyte differentiation of C3H10T1/2, 3T3-L1, and primary preadipocytes. Mechanism studies revealed that sesamolin increased Nrf2 protein expression without inducing its mRNA, leading to an increase in the expression of Nrf2 target genes such as heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 (Nqo1) in C3H10T1/2 adipocytes and mouse embryonic fibroblasts. These effects were significantly attenuated in Nrf2 knockout (KO) mouse embryonic fibroblasts, indicating that effects of sesamolin were dependent on Nrf2. In H1299 human lung cancer cells with KO of Kelch like-ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, sesamolin failed to further increase Nrf2 protein expression. However, upon reexpressing Keap1 in Keap1 KO cells, the ability of sesamolin to elevate Nrf2 protein expression was restored, highlighting the crucial role of Keap1 in sesamolin-induced Nrf2 activation. Taken together, these findings show that sesamolin can inhibit adipocyte differentiation through Keap1-mediated Nrf2 activation.
期刊介绍:
Nutrition Research publishes original research articles, communications, and reviews on basic and applied nutrition. The mission of Nutrition Research is to serve as the journal for global communication of nutrition and life sciences research on diet and health. The field of nutrition sciences includes, but is not limited to, the study of nutrients during growth, reproduction, aging, health, and disease.
Articles covering basic and applied research on all aspects of nutrition sciences are encouraged, including: nutritional biochemistry and metabolism; metabolomics, nutrient gene interactions; nutrient requirements for health; nutrition and disease; digestion and absorption; nutritional anthropology; epidemiology; the influence of socioeconomic and cultural factors on nutrition of the individual and the community; the impact of nutrient intake on disease response and behavior; the consequences of nutritional deficiency on growth and development, endocrine and nervous systems, and immunity; nutrition and gut microbiota; food intolerance and allergy; nutrient drug interactions; nutrition and aging; nutrition and cancer; obesity; diabetes; and intervention programs.