Cooperative voltage control in distribution networks considering multiple uncertainties in communication

IF 4.8 2区 工程技术 Q2 ENERGY & FUELS
Ting Yang, Yachuang Liu, Hao Li, Yanhong Chen, Haibo Pen
{"title":"Cooperative voltage control in distribution networks considering multiple uncertainties in communication","authors":"Ting Yang,&nbsp;Yachuang Liu,&nbsp;Hao Li,&nbsp;Yanhong Chen,&nbsp;Haibo Pen","doi":"10.1016/j.segan.2024.101459","DOIUrl":null,"url":null,"abstract":"<div><p>Delays, jitter, and packet loss in communication networks can impact the performance of cooperative voltage control systems in distribution networks. In distribution systems with a high penetration of renewable energy sources that do not respond promptly, these issues can even lead to system destabilization when voltage surges occur. Considering the interdependence of delay, jitter, and packet loss, the current direct approach of accumulating information entropy may result in the deterioration of dynamic control performance. Based on Copula entropy theory, a new multivariate communication uncertainty metric model is proposed. Using the multivariate Epanechnikov kernel function model, a method has been developed to estimate the multivariate non-independent uncertainty of a communication system. Accurate state estimation is integrated into event-triggered sliding mode control (ETSMC) of the distribution network to facilitate coordinated voltage control and enhance resilience against communication uncertainty. Design criteria for the controller and observer parameters are provided based on Lyapunov stability theory. Simulation results confirm that the proposed ETSMC offers significant improvements in control performance and system resilience to external power disturbances and multivariate communication uncertainty events.</p></div>","PeriodicalId":56142,"journal":{"name":"Sustainable Energy Grids & Networks","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Grids & Networks","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352467724001887","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Delays, jitter, and packet loss in communication networks can impact the performance of cooperative voltage control systems in distribution networks. In distribution systems with a high penetration of renewable energy sources that do not respond promptly, these issues can even lead to system destabilization when voltage surges occur. Considering the interdependence of delay, jitter, and packet loss, the current direct approach of accumulating information entropy may result in the deterioration of dynamic control performance. Based on Copula entropy theory, a new multivariate communication uncertainty metric model is proposed. Using the multivariate Epanechnikov kernel function model, a method has been developed to estimate the multivariate non-independent uncertainty of a communication system. Accurate state estimation is integrated into event-triggered sliding mode control (ETSMC) of the distribution network to facilitate coordinated voltage control and enhance resilience against communication uncertainty. Design criteria for the controller and observer parameters are provided based on Lyapunov stability theory. Simulation results confirm that the proposed ETSMC offers significant improvements in control performance and system resilience to external power disturbances and multivariate communication uncertainty events.

考虑通信中的多重不确定性的配电网中的协同电压控制
通信网络中的延迟、抖动和数据包丢失会影响配电网络中协同电压控制系统的性能。在可再生能源渗透率较高且不能及时响应的配电系统中,当发生电压浪涌时,这些问题甚至会导致系统失稳。考虑到延迟、抖动和数据包丢失之间的相互依存关系,目前直接积累信息熵的方法可能会导致动态控制性能下降。基于 Copula 熵理论,提出了一种新的多变量通信不确定性度量模型。利用多变量 Epanechnikov 核函数模型,开发了一种估算通信系统多变量非独立不确定性的方法。精确的状态估计被集成到配电网络的事件触发滑模控制(ETSMC)中,以促进协调电压控制并增强对通信不确定性的适应能力。基于 Lyapunov 稳定性理论,提供了控制器和观测器参数的设计标准。仿真结果证实,所提出的 ETSMC 能显著改善控制性能,提高系统对外部电力干扰和多变量通信不确定性事件的适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy Grids & Networks
Sustainable Energy Grids & Networks Energy-Energy Engineering and Power Technology
CiteScore
7.90
自引率
13.00%
发文量
206
审稿时长
49 days
期刊介绍: Sustainable Energy, Grids and Networks (SEGAN)is an international peer-reviewed publication for theoretical and applied research dealing with energy, information grids and power networks, including smart grids from super to micro grid scales. SEGAN welcomes papers describing fundamental advances in mathematical, statistical or computational methods with application to power and energy systems, as well as papers on applications, computation and modeling in the areas of electrical and energy systems with coupled information and communication technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信