Numerical Methods Based on the Hybrid Shifted Orthonormal Polynomials and Block-Pulse Functions for Solving a System of Fractional Differential Equations
IF 1.7 4区 工程技术Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"Numerical Methods Based on the Hybrid Shifted Orthonormal Polynomials and Block-Pulse Functions for Solving a System of Fractional Differential Equations","authors":"Abdulqawi A. M. Rageh, Adel R. Hadhoud","doi":"10.1155/2024/6302827","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This paper develops two numerical methods for solving a system of fractional differential equations based on hybrid shifted orthonormal Bernstein polynomials with generalized block-pulse functions (HSOBBPFs) and hybrid shifted orthonormal Legendre polynomials with generalized block-pulse functions (HSOLBPFs). Using these hybrid bases and the operational matrices method, the system of fractional differential equations is reduced to a system of algebraic equations. Error analysis is performed and some simulation examples are provided to demonstrate the efficacy of the proposed techniques. The numerical results of the proposed methods are compared to those of the existing numerical methods. These approaches are distinguished by their ability to work on the wide interval [0, <i>a</i>], as well as their high accuracy and rapid convergence, demonstrating the utility of the proposed approaches over other numerical methods.</p>\n </div>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":"2024 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6302827","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6302827","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops two numerical methods for solving a system of fractional differential equations based on hybrid shifted orthonormal Bernstein polynomials with generalized block-pulse functions (HSOBBPFs) and hybrid shifted orthonormal Legendre polynomials with generalized block-pulse functions (HSOLBPFs). Using these hybrid bases and the operational matrices method, the system of fractional differential equations is reduced to a system of algebraic equations. Error analysis is performed and some simulation examples are provided to demonstrate the efficacy of the proposed techniques. The numerical results of the proposed methods are compared to those of the existing numerical methods. These approaches are distinguished by their ability to work on the wide interval [0, a], as well as their high accuracy and rapid convergence, demonstrating the utility of the proposed approaches over other numerical methods.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.