Inhibiting Leidenfrost phenomenon with granulated polymer film

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chunlin Pang , Xinya Wu , Wei Li , Liqiu Wang , Shien-Ping Feng
{"title":"Inhibiting Leidenfrost phenomenon with granulated polymer film","authors":"Chunlin Pang ,&nbsp;Xinya Wu ,&nbsp;Wei Li ,&nbsp;Liqiu Wang ,&nbsp;Shien-Ping Feng","doi":"10.1016/j.mtphys.2024.101497","DOIUrl":null,"url":null,"abstract":"<div><p>Inhibiting Leidenfrost phenomenon has been conventionally mediated by texturing materials to facilitate the solid-liquid contact or by arranging vapor channels to promote vapor evacuation. However, it remains challenging to break the trade-off between the high Leidenfrost point and the high heat transfer efficiency because elevating Leidenfrost point is often accompanied by the increase of thermal resistance. We propose a method using Rayleigh-Bénard-Marangoni convection and non-solvent induced phase separation to create granulated matrices that prevent the Leidenfrost effect at temperatures up to 400 °C. These matrices offer strong capillary adhesion, ensuring water droplets remain pinned and provide effective cooling. Additionally, the unique bubble dynamics prevent film boiling and Leidenfrost levitation. The matrices are mechanically robust and thermally stable, making them suitable for cooling high-power electronic devices at high temperatures. These results highlight the potential of using polymer matrices for cooling devices at elevated temperatures, potentially advancing cooling technologies.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324001731","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inhibiting Leidenfrost phenomenon has been conventionally mediated by texturing materials to facilitate the solid-liquid contact or by arranging vapor channels to promote vapor evacuation. However, it remains challenging to break the trade-off between the high Leidenfrost point and the high heat transfer efficiency because elevating Leidenfrost point is often accompanied by the increase of thermal resistance. We propose a method using Rayleigh-Bénard-Marangoni convection and non-solvent induced phase separation to create granulated matrices that prevent the Leidenfrost effect at temperatures up to 400 °C. These matrices offer strong capillary adhesion, ensuring water droplets remain pinned and provide effective cooling. Additionally, the unique bubble dynamics prevent film boiling and Leidenfrost levitation. The matrices are mechanically robust and thermally stable, making them suitable for cooling high-power electronic devices at high temperatures. These results highlight the potential of using polymer matrices for cooling devices at elevated temperatures, potentially advancing cooling technologies.

用颗粒聚合物薄膜抑制莱登弗罗斯特现象
抑制莱顿凝霜现象的传统方法是对材料进行纹理处理,以促进固液接触,或布置蒸汽通道以促进蒸汽排空。然而,由于提高莱顿凝霜点通常会伴随热阻的增加,因此要打破高莱顿凝霜点与高传热效率之间的平衡仍具有挑战性。我们提出了一种利用瑞利-贝纳德-马兰戈尼对流和非溶剂诱导相分离的方法,以创建颗粒基质,从而在高达 400 °C 的温度下防止莱顿弗罗斯特效应。这些基质具有很强的毛细管粘附性,可确保水滴保持固定状态并提供有效冷却。此外,独特的气泡动力学还能防止薄膜沸腾和莱顿弗罗斯特悬浮。这种基质具有机械坚固性和热稳定性,因此适合在高温下冷却大功率电子设备。这些结果凸显了利用聚合物基质冷却高温设备的潜力,有望推动冷却技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信