{"title":"Research on thermal management of 3D-ICs assisted by deep learning","authors":"Sixiang Zhang , Qiuping Yang , Zhiyuan Zhu","doi":"10.1016/j.microrel.2024.115455","DOIUrl":null,"url":null,"abstract":"<div><p>Compared with integrated circuits based on through silicon via (TSV), monolithic inter-tier via (MIV) has been identified as a critical technique to enable three dimensional (3D) integration due to its ultra-small size and relatively superior electrical performance, which allows ultra-high integration density. However, the interconnection of monolithic 3D (M3D) design is more prone to electromigration and stress migration. Severe crosstalk during signal transmission and thermal stress at high temperatures have serious limitations on system performance. In this paper, we focus on the COMSOL Multi-physics software, which can solve multi-field problems, to study the crosstalk problem and its thermal stress problem in MIV structures and analyze the crosstalk effects and temperature stress changes of MIV under different physical coupling conditions. An MIV array based on electrical-thermal-mechanical multi-field coupling was proposed, and the temperature and stress were analyzed by finite element analysis software. Additionally, an artificial neural network scheme is proposed that uses MATLAB to train temperature and stress data to predict the stress values of MIV. Experimental results show that the proposed prediction model using a genetic algorithm to optimize the BP Neural Network (GABP) has a 23.3 % higher prediction accuracy than that of a general BP neural network.</p></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"159 ","pages":"Article 115455"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424001355","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Compared with integrated circuits based on through silicon via (TSV), monolithic inter-tier via (MIV) has been identified as a critical technique to enable three dimensional (3D) integration due to its ultra-small size and relatively superior electrical performance, which allows ultra-high integration density. However, the interconnection of monolithic 3D (M3D) design is more prone to electromigration and stress migration. Severe crosstalk during signal transmission and thermal stress at high temperatures have serious limitations on system performance. In this paper, we focus on the COMSOL Multi-physics software, which can solve multi-field problems, to study the crosstalk problem and its thermal stress problem in MIV structures and analyze the crosstalk effects and temperature stress changes of MIV under different physical coupling conditions. An MIV array based on electrical-thermal-mechanical multi-field coupling was proposed, and the temperature and stress were analyzed by finite element analysis software. Additionally, an artificial neural network scheme is proposed that uses MATLAB to train temperature and stress data to predict the stress values of MIV. Experimental results show that the proposed prediction model using a genetic algorithm to optimize the BP Neural Network (GABP) has a 23.3 % higher prediction accuracy than that of a general BP neural network.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.