Generating functions of non-backtracking walks on weighted digraphs: Radius of convergence and Ihara's theorem

IF 1 3区 数学 Q1 MATHEMATICS
Vanni Noferini , María C. Quintana
{"title":"Generating functions of non-backtracking walks on weighted digraphs: Radius of convergence and Ihara's theorem","authors":"Vanni Noferini ,&nbsp;María C. Quintana","doi":"10.1016/j.laa.2024.06.022","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that the generating function associated with the enumeration of non-backtracking walks on finite graphs is a rational matrix-valued function of the parameter; such function is also closely related to graph-theoretical results such as Ihara's theorem and the zeta function on graphs. In Grindrod et al. <span>[13]</span>, the radius of convergence of the generating function was studied for simple (i.e., undirected, unweighted and with no loops) graphs, and shown to depend on the number of cycles in the graph. In this paper, we use technologies from the theory of polynomial and rational matrices to greatly extend these results by studying the radius of convergence of the corresponding generating function for general, possibly directed and/or weighted, graphs. We give an analogous characterization of the radius of convergence for directed (unweighted or weighted) graphs, showing that it depends on the number of cycles in the undirectization of the graph. We also consider backtrack-downweighted walks on unweighted digraphs, and we prove a version of Ihara's theorem in that case. Finally, for weighted directed graphs, we provide for the first time an exact formula for the radius of convergence, improving a previous result that exhibited a lower bound, and we also prove a version of Ihara's theorem.</p></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024379524002763/pdfft?md5=cac16eb3054eb6231f0700f90e0e55f9&pid=1-s2.0-S0024379524002763-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524002763","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that the generating function associated with the enumeration of non-backtracking walks on finite graphs is a rational matrix-valued function of the parameter; such function is also closely related to graph-theoretical results such as Ihara's theorem and the zeta function on graphs. In Grindrod et al. [13], the radius of convergence of the generating function was studied for simple (i.e., undirected, unweighted and with no loops) graphs, and shown to depend on the number of cycles in the graph. In this paper, we use technologies from the theory of polynomial and rational matrices to greatly extend these results by studying the radius of convergence of the corresponding generating function for general, possibly directed and/or weighted, graphs. We give an analogous characterization of the radius of convergence for directed (unweighted or weighted) graphs, showing that it depends on the number of cycles in the undirectization of the graph. We also consider backtrack-downweighted walks on unweighted digraphs, and we prove a version of Ihara's theorem in that case. Finally, for weighted directed graphs, we provide for the first time an exact formula for the radius of convergence, improving a previous result that exhibited a lower bound, and we also prove a version of Ihara's theorem.

加权数图上非回溯行走的生成函数:收敛半径和伊原定理
众所周知,与有限图上非回溯行走枚举相关的生成函数是参数的有理矩阵值函数;该函数还与图论结果密切相关,如 Ihara 定理和图上的 zeta 函数。Grindrod 等人[13]对简单图(即无向、无权重、无循环)的生成函数收敛半径进行了研究,结果表明生成函数的收敛半径取决于图中循环的数量。在本文中,我们利用多项式矩阵和有理矩阵理论中的技术,通过研究一般图(可能是有向图和/或加权图)的相应生成函数的收敛半径,大大扩展了这些结果。我们给出了有向(无权重或有权重)图的收敛半径的类似特征,表明它取决于图的不定向中的循环数。我们还考虑了无权数图上的回溯-减权行走,并证明了这种情况下的伊原定理版本。最后,对于加权有向图,我们首次提供了收敛半径的精确公式,改进了之前显示下限的结果,我们还证明了伊原定理的一个版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信