Impact of NaOH solution surface treatment on Al2O3/β-Ga2O3 MOS capacitors

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Paiwen Fang, Zhengyi Liao, Danni Su, Jun Liang, Xinzhong Wang and Yanli Pei
{"title":"Impact of NaOH solution surface treatment on Al2O3/β-Ga2O3 MOS capacitors","authors":"Paiwen Fang, Zhengyi Liao, Danni Su, Jun Liang, Xinzhong Wang and Yanli Pei","doi":"10.1088/1361-6641/ad59bc","DOIUrl":null,"url":null,"abstract":"A suitable semiconductor surface treatment could improve the gate dielectric quality and reduce the interface states and traps to enhance the performance of metal–oxide semiconductor capacitors (MOSCAPs). In this paper, β-Ga2O3 surface treatment using NaOH solution prior to atomic layer deposition of Al2O3 was investigated. In comparison with piranha pretreatment, MOSCAPs with NaOH solution surface pretreatment show a larger maximum accumulation capacitance with less frequency dispersion, reduced charges/traps and interface state density Dit. The improvement in MOSCAPs performance could be attributed to the NaOH solution pretreatment induced slight surface etching effect and relatively effective hydroxylation surface. These results suggest that the process optimization of NaOH solution surface pretreatment could lead to further improvement of β-Ga2O3 MOSCAPs and have a potential in application of β-Ga2O3 metal–oxide semiconductor field-effect transistors in the future.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"18 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad59bc","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A suitable semiconductor surface treatment could improve the gate dielectric quality and reduce the interface states and traps to enhance the performance of metal–oxide semiconductor capacitors (MOSCAPs). In this paper, β-Ga2O3 surface treatment using NaOH solution prior to atomic layer deposition of Al2O3 was investigated. In comparison with piranha pretreatment, MOSCAPs with NaOH solution surface pretreatment show a larger maximum accumulation capacitance with less frequency dispersion, reduced charges/traps and interface state density Dit. The improvement in MOSCAPs performance could be attributed to the NaOH solution pretreatment induced slight surface etching effect and relatively effective hydroxylation surface. These results suggest that the process optimization of NaOH solution surface pretreatment could lead to further improvement of β-Ga2O3 MOSCAPs and have a potential in application of β-Ga2O3 metal–oxide semiconductor field-effect transistors in the future.
NaOH 溶液表面处理对 Al2O3/β-Ga2O3 MOS 电容器的影响
合适的半导体表面处理可以改善栅极介电质量,减少界面态和陷阱,从而提高金属氧化物半导体电容器(MOSCAP)的性能。本文研究了在原子层沉积 Al2O3 之前使用 NaOH 溶液对 β-Ga2O3 进行表面处理的方法。与食人鱼预处理相比,经过 NaOH 溶液表面预处理的 MOSCAP 显示出更大的最大累积电容、更小的频率分散、更少的电荷/陷阱和界面态密度 Dit。MOSCAP 性能的提高可归因于 NaOH 溶液预处理引起的轻微表面蚀刻效应和相对有效的羟基化表面。这些结果表明,NaOH 溶液表面预处理工艺的优化可进一步提高 β-Ga2O3 MOSCAP 的性能,并有望在未来的 β-Ga2O3 金属氧化物半导体场效应晶体管中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Semiconductor Science and Technology
Semiconductor Science and Technology 工程技术-材料科学:综合
CiteScore
4.30
自引率
5.30%
发文量
216
审稿时长
2.4 months
期刊介绍: Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic. The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including: fundamental properties materials and nanostructures devices and applications fabrication and processing new analytical techniques simulation emerging fields: materials and devices for quantum technologies hybrid structures and devices 2D and topological materials metamaterials semiconductors for energy flexible electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信