{"title":"Evaluation of Thermocompressed Nanoporous Copper Deposit to Replace Soldering for Power Electronic Metal Foam Heat Sinks","authors":"Goulven Janod;Lucas Chachay;Jonathan Schoenleber;Yvan Avenas;Didier Bouvard;Rémi Daudin;Jean-Michel Missiaen;Marie-Pierre Gigandet;Jean-Yves Hihn;Rabih Khazaka","doi":"10.1109/TCPMT.2024.3418673","DOIUrl":null,"url":null,"abstract":"Metal foams appear as innovative solutions for cooling high-density power electronic systems. In these assemblies, the foam is currently soldered on a copper substrate. However, the temperature of solders is limited and their aging under high thermomechanical constraints is a clear weakness of this solution. A novel way to attach metal foams to copper substrates is presented in this article, the thermocompression of a nanoporous copper deposit. The obtained attachments show good densification of the deposit, and the conducted shear tests show an increase in the contact mechanical strength with increasing thermocompression time. In addition, using a dynamic methodology, the thermal contact resistance of such joints is evaluated which shows results similar to those obtained on soldered joints.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"14 8","pages":"1359-1366"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10570216/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Metal foams appear as innovative solutions for cooling high-density power electronic systems. In these assemblies, the foam is currently soldered on a copper substrate. However, the temperature of solders is limited and their aging under high thermomechanical constraints is a clear weakness of this solution. A novel way to attach metal foams to copper substrates is presented in this article, the thermocompression of a nanoporous copper deposit. The obtained attachments show good densification of the deposit, and the conducted shear tests show an increase in the contact mechanical strength with increasing thermocompression time. In addition, using a dynamic methodology, the thermal contact resistance of such joints is evaluated which shows results similar to those obtained on soldered joints.
期刊介绍:
IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.