Recessed Trench Gate AlGaN/GaN HEMT for pH Monitoring: Design and Sensitivity Evaluation

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ritu Poonia;Lava Bhargava;Aasif Mohammad Bhat;C. Periasamy
{"title":"Recessed Trench Gate AlGaN/GaN HEMT for pH Monitoring: Design and Sensitivity Evaluation","authors":"Ritu Poonia;Lava Bhargava;Aasif Mohammad Bhat;C. Periasamy","doi":"10.1109/TNANO.2024.3422181","DOIUrl":null,"url":null,"abstract":"This work proposed a recessed trench gate AlGaN/GaN HEMT for a potential of hydrogen ion (\n<inline-formula><tex-math>$\\rm H^+$</tex-math></inline-formula>\n) sensing by eliminating the need for a reference electrode. The proposed device performance has been optimized by simulating the device with the help of the ATLAS device simulation tool, considering the pH model. The sensing surface has been functionalized with APTES to improve the sensor's performance to activate the binding sites. The impact of pH solution on the device characteristic alters the threshold voltage sensitivity, drain current sensitivity, and signal-to-noise ratio. The effect of gate voltage in terms of maximum \n<inline-formula><tex-math>$\\rm g_{m}$</tex-math></inline-formula>\n has also been optimized for the maximum sensitivity of the device to the pH solution. The device linearity has been utilized for \n<inline-formula><tex-math>$\\rm VIP_{3}$</tex-math></inline-formula>\n, \n<inline-formula><tex-math>$\\rm IIP_{3}$</tex-math></inline-formula>\n, and \n<inline-formula><tex-math>$\\rm IMD_{4}$</tex-math></inline-formula>\n. The average threshold voltage sensitivity obtained is 160.56 mV/pH, higher than the Nernstian limit (59 mV/pH), and the current sensitivity obtained is 22.93 mA/mm.pH. The device's reliability has been optimized by addressing sensor output drift across various temperature and humidity conditions. These findings suggest that the proposed structure presents a promising alternative to current ion sensing techniques.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"778-785"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10582475/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposed a recessed trench gate AlGaN/GaN HEMT for a potential of hydrogen ion ( $\rm H^+$ ) sensing by eliminating the need for a reference electrode. The proposed device performance has been optimized by simulating the device with the help of the ATLAS device simulation tool, considering the pH model. The sensing surface has been functionalized with APTES to improve the sensor's performance to activate the binding sites. The impact of pH solution on the device characteristic alters the threshold voltage sensitivity, drain current sensitivity, and signal-to-noise ratio. The effect of gate voltage in terms of maximum $\rm g_{m}$ has also been optimized for the maximum sensitivity of the device to the pH solution. The device linearity has been utilized for $\rm VIP_{3}$ , $\rm IIP_{3}$ , and $\rm IMD_{4}$ . The average threshold voltage sensitivity obtained is 160.56 mV/pH, higher than the Nernstian limit (59 mV/pH), and the current sensitivity obtained is 22.93 mA/mm.pH. The device's reliability has been optimized by addressing sensor output drift across various temperature and humidity conditions. These findings suggest that the proposed structure presents a promising alternative to current ion sensing techniques.
用于 pH 值监测的凹槽栅 AlGaN/GaN HEMT:设计和灵敏度评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信