Memristor Crossbar Array Simulation for Deep Learning Applications

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Elvis Díaz Machado;Jose Lopez Vicario;Enrique Miranda;Antoni Morell
{"title":"Memristor Crossbar Array Simulation for Deep Learning Applications","authors":"Elvis Díaz Machado;Jose Lopez Vicario;Enrique Miranda;Antoni Morell","doi":"10.1109/TNANO.2024.3415382","DOIUrl":null,"url":null,"abstract":"Hardware neural networks (HNNs) based on crossbar arrays are expected to be energy-efficient computing architectures for solving complex tasks due to their small feature sizes. Although there exist software libraries able to deal with circuit simulation of memristor networks, they still exceed the memory available of any consumer grade GPU's VRAM for large scale crossbar arrays while having a significant computational complexity. This work discusses an iterative method to implement a fast simulation of the corresponding memristor crossbar array with much more limited memory use.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"512-515"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10559273","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10559273/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Hardware neural networks (HNNs) based on crossbar arrays are expected to be energy-efficient computing architectures for solving complex tasks due to their small feature sizes. Although there exist software libraries able to deal with circuit simulation of memristor networks, they still exceed the memory available of any consumer grade GPU's VRAM for large scale crossbar arrays while having a significant computational complexity. This work discusses an iterative method to implement a fast simulation of the corresponding memristor crossbar array with much more limited memory use.
用于深度学习应用的晶体管交叉阵列仿真
基于交叉棒阵列的硬件神经网络(HNN)由于特征尺寸小,有望成为解决复杂任务的高能效计算架构。虽然已有软件库可以处理忆阻器网络的电路仿真,但它们仍然超出了任何消费级 GPU 的 VRAM 内存,无法用于大规模的交叉条阵列,同时计算复杂度也很高。这项研究讨论了一种迭代方法,它能在更有限的内存使用范围内对相应的忆阻器交叉阵列进行快速仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信