{"title":"The formation approaches of volatile compounds in Chinese traditional hot-pressed fragrant rapeseed oil","authors":"Xiangyu Wang, Xiaolong Li, Ju Hui, Honggang Huang, Dongzhe Sun, Baijun Chu, Huimin Zhao","doi":"10.1002/aocs.12872","DOIUrl":null,"url":null,"abstract":"<p>Hot-pressed fragrant rapeseed oil (HFRO) is a traditional edible oil in China, prized for its special flavor, which includes fresh, spicy, pungent and roasted fragrance. The fresh fragrance is mainly brought by aldehydes, ketones, esters, alcohols and other substances produced by fat oxidation. The pungent fragrance is mainly caused by thiocyanates and isothiocyanates produced by the degradation of glucosinolates. Roasting aroma is usually brought by pyrazines and furans produced by Maillard reaction. Both the composition of the rapeseed and the processing techniques employed are critical in shaping these flavor components. An optimal processing temperature for HFRO is around 150°C. Rapeseed varieties with higher glucosinolates content are preferred for producing oils with a pronounced spicy, whereas those with lower glucosinolates levels are suitable for a stronger roasted aroma. The moisture content of the rapeseed should ideally be maintained between 10% and 15% to optimize flavor development. This study elucidates the primary pathways for volatile compound production in HFRO and discusses future prospects and research directions for the enhancement of rapeseed oil, offering a scientific foundation for the modern processing and quality control of rapeseed oil.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 11","pages":"1299-1316"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12872","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Hot-pressed fragrant rapeseed oil (HFRO) is a traditional edible oil in China, prized for its special flavor, which includes fresh, spicy, pungent and roasted fragrance. The fresh fragrance is mainly brought by aldehydes, ketones, esters, alcohols and other substances produced by fat oxidation. The pungent fragrance is mainly caused by thiocyanates and isothiocyanates produced by the degradation of glucosinolates. Roasting aroma is usually brought by pyrazines and furans produced by Maillard reaction. Both the composition of the rapeseed and the processing techniques employed are critical in shaping these flavor components. An optimal processing temperature for HFRO is around 150°C. Rapeseed varieties with higher glucosinolates content are preferred for producing oils with a pronounced spicy, whereas those with lower glucosinolates levels are suitable for a stronger roasted aroma. The moisture content of the rapeseed should ideally be maintained between 10% and 15% to optimize flavor development. This study elucidates the primary pathways for volatile compound production in HFRO and discusses future prospects and research directions for the enhancement of rapeseed oil, offering a scientific foundation for the modern processing and quality control of rapeseed oil.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.