Protective Role of Ellagic Acid Against Ethanol-Induced Neurodevelopmental Disorders in Newborn Male Rats: Insights into Maintenance of Mitochondrial Function and Inhibition of Oxidative Stress.
Zhaleh Jamali, Ahmad Salimi, Saleh Khezri, Pirasteh Norozi, Behzad Garmabi, Mehdi Khaksari
{"title":"Protective Role of Ellagic Acid Against Ethanol-Induced Neurodevelopmental Disorders in Newborn Male Rats: Insights into Maintenance of Mitochondrial Function and Inhibition of Oxidative Stress.","authors":"Zhaleh Jamali, Ahmad Salimi, Saleh Khezri, Pirasteh Norozi, Behzad Garmabi, Mehdi Khaksari","doi":"10.15288/jsad.24-00118","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Ellagic acid (EA) exerts, neuroprotective, mitoprotective, anti-oxidative and anti-inflammatory effects. We evaluated protective effect of EA on ethanol-induced fetal alcohol spectrum disorders (FASD).</p><p><strong>Methods: </strong>A total of 35 newborn male rats were used, divided into five groups, including; control (normal saline), ethanol (5.25 g/kg per day), ethanol (5.25 g/kg per day) + EA (10 mg/kg), ethanol (5.25 g/kg per day) + EA (20 mg/kg) and ethanol (5.25 g/kg per day) + EA (40 mg/kg). Thirty-six days after birth behavioral tests (Morris water maze and Elevated Plus Maze), tumor necrosis factor-α (TNF-α) levels, oxidative markers (malondialdehyde, glutathione and superoxide dismutase), mitochondrial examination such as succinate dehydrogenases (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) formation were analyzed.</p><p><strong>Results: </strong>The results revealed that ethanol exposure adversely affected cognitive and mitochondrial functions and as well as induced oxidative stress and inflammation in brain tissue. However, EA (20 and 40 mg/kg) administration effectively prevented the toxic effects of ethanol in FASD model.</p><p><strong>Conclusions: </strong>These findings demonstrate that ethanol application significantly impairs the brain development via mitochondrial dysfunction and induction of oxidative stress. These data indicate that EA might be a useful compound for prevention of alcohol-induced FASD.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.15288/jsad.24-00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Ellagic acid (EA) exerts, neuroprotective, mitoprotective, anti-oxidative and anti-inflammatory effects. We evaluated protective effect of EA on ethanol-induced fetal alcohol spectrum disorders (FASD).
Methods: A total of 35 newborn male rats were used, divided into five groups, including; control (normal saline), ethanol (5.25 g/kg per day), ethanol (5.25 g/kg per day) + EA (10 mg/kg), ethanol (5.25 g/kg per day) + EA (20 mg/kg) and ethanol (5.25 g/kg per day) + EA (40 mg/kg). Thirty-six days after birth behavioral tests (Morris water maze and Elevated Plus Maze), tumor necrosis factor-α (TNF-α) levels, oxidative markers (malondialdehyde, glutathione and superoxide dismutase), mitochondrial examination such as succinate dehydrogenases (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) formation were analyzed.
Results: The results revealed that ethanol exposure adversely affected cognitive and mitochondrial functions and as well as induced oxidative stress and inflammation in brain tissue. However, EA (20 and 40 mg/kg) administration effectively prevented the toxic effects of ethanol in FASD model.
Conclusions: These findings demonstrate that ethanol application significantly impairs the brain development via mitochondrial dysfunction and induction of oxidative stress. These data indicate that EA might be a useful compound for prevention of alcohol-induced FASD.