Self-supervised multi-object tracking based on metric learning

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xin Feng, Yan Liu, Hanzhi Yang, Xiaoning Jiao, Zhi Liu
{"title":"Self-supervised multi-object tracking based on metric learning","authors":"Xin Feng, Yan Liu, Hanzhi Yang, Xiaoning Jiao, Zhi Liu","doi":"10.1007/s40747-024-01475-3","DOIUrl":null,"url":null,"abstract":"<p>The current paradigm of joint detection and tracking still requires a large amount of instance-level trajectory annotation, which incurs high annotation costs. Moreover, treating embedding training as a classification problem would lead to difficulties in model fitting. In this paper, we propose a new self-supervised multi-object tracking based on the real-time joint detection and embedding (JDE) framework, which we termed as self-supervised multi-object tracking (SS-MOT). In SS-MOT, the short-term temporal correlations between objects within and across adjacent video frames are both considered as self-supervised constraints, where the distances between different objects are enlarged while the distances between same object of adjacent frames are brought closer. In addition, short trajectories are formed by matching pairs of adjacent frames using a matching algorithm, and these matched pairs are treated as positive samples. The distances between positive samples are then minimized for futher the feature representation of the same object. Therefore, our method can be trained on videos without instance-level annotations. We apply our approach to state-of-the-art JDE models, such as FairMOT, Cstrack, and SiamMOT, and achieve comparable results to these supevised methods on the widely used MOT17 and MOT20 challenges.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01475-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The current paradigm of joint detection and tracking still requires a large amount of instance-level trajectory annotation, which incurs high annotation costs. Moreover, treating embedding training as a classification problem would lead to difficulties in model fitting. In this paper, we propose a new self-supervised multi-object tracking based on the real-time joint detection and embedding (JDE) framework, which we termed as self-supervised multi-object tracking (SS-MOT). In SS-MOT, the short-term temporal correlations between objects within and across adjacent video frames are both considered as self-supervised constraints, where the distances between different objects are enlarged while the distances between same object of adjacent frames are brought closer. In addition, short trajectories are formed by matching pairs of adjacent frames using a matching algorithm, and these matched pairs are treated as positive samples. The distances between positive samples are then minimized for futher the feature representation of the same object. Therefore, our method can be trained on videos without instance-level annotations. We apply our approach to state-of-the-art JDE models, such as FairMOT, Cstrack, and SiamMOT, and achieve comparable results to these supevised methods on the widely used MOT17 and MOT20 challenges.

Abstract Image

基于度量学习的自监督多目标跟踪
目前的联合检测和跟踪模式仍然需要大量实例级轨迹标注,标注成本很高。此外,将嵌入训练视为分类问题会导致模型拟合困难。本文提出了一种基于实时联合检测和嵌入(JDE)框架的新型自监督多目标跟踪方法,我们称之为自监督多目标跟踪(SS-MOT)。在 SS-MOT 中,相邻视频帧内和相邻视频帧间物体的短期时间相关性都被视为自监督约束条件,不同物体之间的距离被拉大,而相邻帧中相同物体之间的距离被拉近。此外,使用匹配算法匹配相邻帧对形成短轨迹,并将这些匹配的帧对视为正样本。然后最小化正样本之间的距离,以进一步表示同一物体的特征。因此,我们的方法可以在没有实例级注释的视频上进行训练。我们将我们的方法应用于最先进的 JDE 模型,如 FairMOT、Cstrack 和 SiamMOT,并在广泛使用的 MOT17 和 MOT20 挑战中取得了与这些先进方法相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信