Enhancing brain tumor detection in MRI with a rotation invariant Vision Transformer.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-06-18 eCollection Date: 2024-01-01 DOI:10.3389/fninf.2024.1414925
Palani Thanaraj Krishnan, Pradeep Krishnadoss, Mukund Khandelwal, Devansh Gupta, Anupoju Nihaal, T Sunil Kumar
{"title":"Enhancing brain tumor detection in MRI with a rotation invariant Vision Transformer.","authors":"Palani Thanaraj Krishnan, Pradeep Krishnadoss, Mukund Khandelwal, Devansh Gupta, Anupoju Nihaal, T Sunil Kumar","doi":"10.3389/fninf.2024.1414925","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Rotation Invariant Vision Transformer (RViT) is a novel deep learning model tailored for brain tumor classification using MRI scans.</p><p><strong>Methods: </strong>RViT incorporates rotated patch embeddings to enhance the accuracy of brain tumor identification.</p><p><strong>Results: </strong>Evaluation on the Brain Tumor MRI Dataset from Kaggle demonstrates RViT's superior performance with sensitivity (1.0), specificity (0.975), F1-score (0.984), Matthew's Correlation Coefficient (MCC) (0.972), and an overall accuracy of 0.986.</p><p><strong>Conclusion: </strong>RViT outperforms the standard Vision Transformer model and several existing techniques, highlighting its efficacy in medical imaging. The study confirms that integrating rotational patch embeddings improves the model's capability to handle diverse orientations, a common challenge in tumor imaging. The specialized architecture and rotational invariance approach of RViT have the potential to enhance current methodologies for brain tumor detection and extend to other complex imaging tasks.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"18 ","pages":"1414925"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217563/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1414925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The Rotation Invariant Vision Transformer (RViT) is a novel deep learning model tailored for brain tumor classification using MRI scans.

Methods: RViT incorporates rotated patch embeddings to enhance the accuracy of brain tumor identification.

Results: Evaluation on the Brain Tumor MRI Dataset from Kaggle demonstrates RViT's superior performance with sensitivity (1.0), specificity (0.975), F1-score (0.984), Matthew's Correlation Coefficient (MCC) (0.972), and an overall accuracy of 0.986.

Conclusion: RViT outperforms the standard Vision Transformer model and several existing techniques, highlighting its efficacy in medical imaging. The study confirms that integrating rotational patch embeddings improves the model's capability to handle diverse orientations, a common challenge in tumor imaging. The specialized architecture and rotational invariance approach of RViT have the potential to enhance current methodologies for brain tumor detection and extend to other complex imaging tasks.

利用旋转不变视觉变换器增强核磁共振成像中的脑肿瘤检测。
背景旋转不变视觉变换器(RViT)是一种新型深度学习模型,专为使用核磁共振扫描进行脑肿瘤分类而定制:RViT结合了旋转补丁嵌入,以提高脑肿瘤识别的准确性:在 Kaggle 的脑肿瘤 MRI 数据集上进行的评估表明,RViT 的灵敏度 (1.0)、特异度 (0.975)、F1-分数 (0.984)、马修相关系数 (MCC) (0.972) 和总体准确度 (0.986) 均表现优异:RViT 优于标准视觉变换器模型和几种现有技术,突出了其在医学成像中的功效。研究证实,集成旋转补丁嵌入提高了模型处理不同方向的能力,这是肿瘤成像中的一个常见挑战。RViT 的专业架构和旋转不变性方法有望增强当前的脑肿瘤检测方法,并扩展到其他复杂的成像任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信