Using machine learning to automatically measure kyphotic and lordotic angle measurements on radiographs for children with adolescent idiopathic scoliosis
Jason Wong , Marek Reformat , Eric Parent , Edmond Lou
{"title":"Using machine learning to automatically measure kyphotic and lordotic angle measurements on radiographs for children with adolescent idiopathic scoliosis","authors":"Jason Wong , Marek Reformat , Eric Parent , Edmond Lou","doi":"10.1016/j.medengphy.2024.104202","DOIUrl":null,"url":null,"abstract":"<div><p>Measuring the kyphotic angle (KA) and lordotic angle (LA) on lateral radiographs is important to truly diagnose children with adolescent idiopathic scoliosis. However, it is a time-consuming process to measure the KA because the endplate of the upper thoracic vertebra is normally difficult to identify. To save time and improve measurement accuracy, a machine learning algorithm was developed to automatically extract the KA and LA. The accuracy and reliability of the T1-T12 KA, T5-T12 KA, and L1-L5 LA were reported. A convolutional neural network was trained using 100 radiographs with data augmentation to segment the T1-L5 vertebrae. Sixty radiographs were used to test the method. Accuracy and reliability were reported using the percentage of measurements within clinical acceptance (≤9°), standard error of measurement (SEM), and inter-method intraclass correlation coefficient (ICC<sub>2,1</sub>). The automatic method detected 95 % (57/60), 100 %, and 100 % for T1-T12 KA, T5-T12 KA, and L1-L5 LA, respectively. The clinical acceptance rate, SEM, and ICC<sub>2,1</sub> for T1-T12 KA, T5-T12 KA, and L1-L5 LA were (98 %, 0.80°, 0.91), (75 %, 4.08°, 0.60), and (97 %, 1.38°, 0.88), respectively. The automatic method measured quickly with an average of 4 ± 2 s per radiograph and illustrated how measurements were made on the image, allowing verifications by clinicians.</p></div>","PeriodicalId":49836,"journal":{"name":"Medical Engineering & Physics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Engineering & Physics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350453324001036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Measuring the kyphotic angle (KA) and lordotic angle (LA) on lateral radiographs is important to truly diagnose children with adolescent idiopathic scoliosis. However, it is a time-consuming process to measure the KA because the endplate of the upper thoracic vertebra is normally difficult to identify. To save time and improve measurement accuracy, a machine learning algorithm was developed to automatically extract the KA and LA. The accuracy and reliability of the T1-T12 KA, T5-T12 KA, and L1-L5 LA were reported. A convolutional neural network was trained using 100 radiographs with data augmentation to segment the T1-L5 vertebrae. Sixty radiographs were used to test the method. Accuracy and reliability were reported using the percentage of measurements within clinical acceptance (≤9°), standard error of measurement (SEM), and inter-method intraclass correlation coefficient (ICC2,1). The automatic method detected 95 % (57/60), 100 %, and 100 % for T1-T12 KA, T5-T12 KA, and L1-L5 LA, respectively. The clinical acceptance rate, SEM, and ICC2,1 for T1-T12 KA, T5-T12 KA, and L1-L5 LA were (98 %, 0.80°, 0.91), (75 %, 4.08°, 0.60), and (97 %, 1.38°, 0.88), respectively. The automatic method measured quickly with an average of 4 ± 2 s per radiograph and illustrated how measurements were made on the image, allowing verifications by clinicians.
期刊介绍:
Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. The journal publishes in-depth critical reviews, scientific papers and technical notes. Our focus encompasses the application of the basic principles of physics and engineering to the development of medical devices and technology, with the ultimate aim of producing improvements in the quality of health care.Topics covered include biomechanics, biomaterials, mechanobiology, rehabilitation engineering, biomedical signal processing and medical device development. Medical Engineering & Physics aims to keep both engineers and clinicians abreast of the latest applications of technology to health care.